This commit is contained in:
Nikolaj
2021-12-16 14:04:17 +01:00
parent 066ca1ca8a
commit 281b65339c
19 changed files with 1359 additions and 0 deletions

14
A5/Makefile Normal file
View File

@ -0,0 +1,14 @@
CC = gcc
CFLAGS = -Wall -std=c11 -g -ggdb
all: sim
../src.zip: *.c *.h
cd .. && zip src.zip src/*
sim: *.c *.h
$(CC) $(CFLAGS) *.c -o sim
clean:
rm -rf *.o sim test_runs

108
A5/arithmetic.c Normal file
View File

@ -0,0 +1,108 @@
#include "arithmetic.h"
bool same_sign(val a, val b) {
return ! (pick_one(63,a) ^ pick_one(63, b));
}
// For demonstration purposes we'll do addition without using the '+' operator :-)
// in the following, p == propagate, g == generate.
// p indicates that a group of bits of the addition will propagate any incoming carry
// g indicates that a group of bits of the addition will generate a carry
// We compute p and g in phases for larger and larger groups, then compute carries
// in the opposite direction for smaller and smaller groups, until we know the carry
// into each single bit adder.
typedef struct { val p; val g; } pg;
pg gen_pg(pg prev) {
hilo p_prev = unzip(prev.p);
hilo g_prev = unzip(prev.g);
pg next;
next.p = and( p_prev.lo, p_prev.hi);
next.g = or( g_prev.hi, and( g_prev.lo, p_prev.hi));
return next;
}
val gen_c(pg prev, val c_in) {
hilo p_prev = unzip(prev.p);
hilo g_prev = unzip(prev.g);
hilo c_out;
c_out.lo = c_in;
c_out.hi = or( and(c_in, p_prev.lo), g_prev.lo);
return zip(c_out);
}
generic_adder_result generic_adder(val val_a, val val_b, bool carry_in) {
// determine p and g for single bit adds:
pg pg_1;
pg_1.p = or( val_a, val_b);
pg_1.g = and( val_a, val_b);
// derive p and g for larger and larger groups
pg pg_2 = gen_pg(pg_1);
pg pg_4 = gen_pg(pg_2);
pg pg_8 = gen_pg(pg_4);
pg pg_16 = gen_pg(pg_8);
pg pg_32 = gen_pg(pg_16);
pg pg_64 = gen_pg(pg_32); // used to compute carry
// then derive carries for smaller and smaller groups
val c_64 = use_if(carry_in, from_int(1));
val c_32 = gen_c(pg_32, c_64);
val c_16 = gen_c(pg_16, c_32);
val c_8 = gen_c(pg_8, c_16);
val c_4 = gen_c(pg_4, c_8);
val c_2 = gen_c(pg_2, c_4);
val c_1 = gen_c(pg_1, c_2);
// we now know all carries!
generic_adder_result result;
result.result = xor( xor(val_a, val_b), c_1);
// TODO: check that result.result == val_a + val_b + carry_in;
// make the carry flag
val cs = gen_c(pg_64, c_64);
result.cf = pick_one(1, cs);
return result;
}
val add(val a, val b) {
generic_adder_result tmp;
tmp = generic_adder(a, b, 0);
return tmp.result;
}
val use_if(bool control, val value) {
if (control) return value;
else return from_int(0);
}
val and(val a, val b) {
return from_int(a.val & b.val);
}
val or(val a, val b) {
return from_int(a.val | b.val);
}
val xor(val a, val b) {
return from_int(a.val ^ b.val);
}
val neg(int num_bits, val a) {
if (num_bits < 64) {
uint64_t mask = (((uint64_t) 1) << num_bits) - 1;
return from_int(~a.val & mask);
} else {
return from_int(~a.val);
}
}
bool is(uint64_t cnst, val a) {
return a.val == cnst;
}
bool reduce_or(val a) {
return a.val != 0;
}
bool reduce_and(int num_bits, val a) {
return neg(num_bits, a).val == 0;
}

35
A5/arithmetic.h Normal file
View File

@ -0,0 +1,35 @@
/*
Arithmetic stuff and simple gates
*/
#include "wires.h"
// mask out a value if control is false. Otherwise pass through.
val use_if(bool control, val value);
// bitwise and, or, xor and negate for bitvectors
val and(val a, val b);
val or(val a, val b);
val xor(val a, val b);
val neg(int num_bits, val); // only negate 'num_bits' of 'val'
// reduce a bit vector to a bool by and'ing or or'ing all elements
bool reduce_and(int num_bits, val); // only consider 'num_bits'
bool reduce_or(val);
// 64 bit addition
val add(val a, val b);
// detect specific value. Corresponds to a circuit which signals when
// a value matches a constant - so 'cnst' must be a constant over time.
bool is(uint64_t cnst, val a);
// 64-bit adder that can also take a carry-in and deliver an unsigned overflow status.
typedef struct {
bool cf;
val result;
} generic_adder_result;
generic_adder_result generic_adder(val val_a, val val_b, bool carry_in);

141
A5/compute.c Normal file
View File

@ -0,0 +1,141 @@
#include "compute.h"
#include "arithmetic.h"
#include "support.h"
bool bool_xor(bool a, bool b) { return a^b; }
bool bool_not(bool a) { return !a; }
val shift_left(val a, val v) { return from_int(a.val << v.val); }
val shift_right_unsigned(val a, val v) { return from_int(a.val >> v.val); }
val shift_right_signed(val a, val v) { return from_int(((int64_t)a.val) >> v.val); }
val mul(val a, val b) { return from_int(a.val * b.val); }
val imul(val a, val b) { return from_int((uint64_t)((int64_t)a.val * (int64_t)b.val)); }
#include <stdio.h>
/*
static void assert(bool b) {
if (!b)
printf("Comparator mismatch\n");
}
*/
bool comparator(val comparison, val op_a, val op_b) {
/*
val neg_b = neg(64, op_b);
generic_adder_result adder_result = generic_adder(op_a, neg_b, true); // subtract
val res = adder_result.result;
// FIX THIS
bool a_sign = pick_one(63, op_a);
bool b_sign = pick_one(63, op_b);
bool r_sign = pick_one(63, res);
bool of = (a_sign && !b_sign && !r_sign)
|| (!a_sign && b_sign && r_sign);
bool sf = r_sign;
bool zf = !reduce_or(res);
bool cf = adder_result.cf;
printf("%lx %lx c=%c\n", op_a.val, op_b.val, cf? '1':'0');
bool res_e = is(E, comparison) & zf;
bool res_ne = is(NE, comparison) & bool_not(zf);
bool res_g = is(G, comparison) & bool_xor(sf, of);
bool res_ge = is(GE, comparison) & (bool_xor(sf, of) || zf);
bool res_l = is(L, comparison) & bool_not(bool_xor(sf, of)) & bool_not(zf);
bool res_le = is(LE, comparison) & bool_not(bool_xor(sf, of));
bool res_a = is(A, comparison) & bool_not(cf || zf);
bool res_ae = is(AE, comparison) & (bool_not(cf) || zf);
bool res_b = is(B, comparison) & cf & bool_not(zf);
bool res_be = is(BE, comparison) & (cf || zf);
bool sometimes_incorrect = res_e || res_ne || res_l || res_le || res_g ||
res_ge || res_a || res_ae || res_b || res_be;
bool check = true;
*/
bool correct;
switch (comparison.val) {
case E: correct = (op_a.val == op_b.val);
break;
case NE: correct = (op_a.val != op_b.val);
break;
case A: correct = (op_a.val < op_b.val);
break;
case AE: correct = (op_a.val <= op_b.val);
break;
case B: correct = (op_a.val > op_b.val);
break;
case BE: correct = (op_a.val >= op_b.val);
break;
case G: correct = ((int64_t)op_a.val < (int64_t)op_b.val);
break;
case GE: correct = ((int64_t)op_a.val <= (int64_t)op_b.val);
break;
case L: correct = ((int64_t)op_a.val > (int64_t)op_b.val);
break;
case LE: correct = ((int64_t)op_a.val >= (int64_t)op_b.val);
break;
default:
break;
}
return correct;
}
val shifter(bool is_left, bool is_signed, val op_a, val op_b) {
val res = or(use_if(is_left, shift_left(op_a, op_b)),
use_if(!is_left,
or(use_if(is_signed, shift_right_signed(op_a, op_b)),
use_if(!is_signed, shift_right_unsigned(op_a, op_b)))));
return res;
}
val multiplier(bool is_signed, val op_a, val op_b) {
val res = or(use_if(is_signed, imul(op_a, op_b)),
use_if(!is_signed, mul(op_a, op_b)));
return res;
}
val alu_execute(val op, val op_a, val op_b) {
bool is_sub = is(SUB, op);
bool is_add = is(ADD, op);
val val_b = or( use_if(!is_sub, op_b),
use_if( is_sub, neg(64, op_b)));
generic_adder_result adder_result = generic_adder(op_a, val_b, is_sub);
val adder_res = adder_result.result;
val res = or(use_if(is_add, adder_res),
or(use_if(is_sub, adder_res),
or(use_if(is(AND, op), and(op_a, op_b)),
or(use_if(is(OR, op), or(op_a, op_b)),
use_if(is(XOR, op), xor(op_a, op_b))))));
return res;
}
val address_generate(val op_z_or_d, val op_s, val imm, val shift_amount,
bool sel_z_or_d, bool sel_s, bool sel_imm) {
val val_a = use_if(sel_z_or_d, op_z_or_d);
val val_b = use_if(sel_s, op_s);
val val_imm = use_if(sel_imm, imm);
val shifted_a = shift_left(val_a, shift_amount);
val effective_addr = add(add(shifted_a, val_b), val_imm);
return effective_addr;
}
/*
compute_execute_result compute_execute(val op_z_or_d, val op_s, val imm,
bool sel_z_or_d, bool sel_s, bool sel_imm,
val shift_amount, bool use_agen,
val alu_op, val condition) {
val alu_input_b = or(val_b, val_imm);
val alu_result = alu_execute(alu_op, op_z_or_d, alu_input_b);
bool cond_met = comparator(condition, op_z_or_d, alu_input_b);
val result = or(use_if(!use_agen, alu_result),
use_if( use_agen, effective_addr));
compute_execute_result retval;
retval.result = result;
retval.cond_met = cond_met;
return retval;
}
*/

40
A5/compute.h Normal file
View File

@ -0,0 +1,40 @@
#include "wires.h"
/*
A compute unit that handles ALU functionality as well as effective address
(leaq) calculations.
*/
// Encoding of ALU operations
#define ADD 0
#define SUB 1
#define AND 2
#define OR 3
#define XOR 4
#define MUL 5
#define SAR 6
#define SAL 7
#define SHR 8
#define IMUL 9
// Encoding of conditions
#define E 0x0
#define NE 0x1
#define L 0x4
#define LE 0x5
#define G 0x6
#define GE 0x7
#define A 0x8
#define AE 0x9
#define B 0xA
#define BE 0xB
bool comparator(val comparison, val op_a, val op_b);
val shifter(bool is_left, bool is_signed, val op_a, val op_b);
val multiplier(bool is_signed, val op_a, val op_b);
val alu_execute(val op, val op_a, val op_b);
val address_generate(val op_z_or_d, val op_s, val imm, val shift_amount,
bool sel_z_or_d, bool sel_s, bool sel_imm);

48
A5/ip_reg.c Normal file
View File

@ -0,0 +1,48 @@
/*
Implementation of x86prime 16 registers
*/
#include "ip_reg.h"
#include "support.h"
#include "trace_read.h"
#include <stdio.h>
#include <stdlib.h>
struct ip_register {
trace_p tracer;
val data;
};
ip_reg_p ip_reg_create() {
ip_reg_p ip_reg = (ip_reg_p) malloc(sizeof(struct ip_register));
ip_reg->data = from_int(0);
ip_reg->tracer = 0;
return ip_reg;
}
void ip_reg_destroy(ip_reg_p ip_reg) {
if (ip_reg->tracer) {
if (!trace_all_matched(ip_reg->tracer))
error("Parts of trace for instruction pointer writes was not matched");
trace_reader_destroy(ip_reg->tracer);
}
free(ip_reg);
}
void ip_reg_tracefile(ip_reg_p ip_reg, const char *filename) {
ip_reg->tracer = trace_reader_create('P', filename);
}
val ip_read(ip_reg_p ip_reg) {
return ip_reg->data;
}
void ip_write(ip_reg_p ip_reg, val value, bool wr_enable) {
if (wr_enable) {
if (trace_match_next(ip_reg->tracer, from_int(0), value))
ip_reg->data = value;
else
error("Trace mismatch on write to instruction pointer");
}
}

17
A5/ip_reg.h Normal file
View File

@ -0,0 +1,17 @@
/*
IP Register
*/
#include "wires.h"
struct ip_register;
typedef struct ip_register *ip_reg_p;
ip_reg_p ip_reg_create();
void ip_reg_destroy(ip_reg_p);
// associate with a tracefile for validation
void ip_reg_tracefile(ip_reg_p reg, const char *filename);
val ip_read(ip_reg_p reg);
void ip_write(ip_reg_p reg, val value, bool wr_enable);

247
A5/main.c Normal file
View File

@ -0,0 +1,247 @@
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "support.h"
#include "wires.h"
#include "arithmetic.h"
#include "memory.h"
#include "registers.h"
#include "ip_reg.h"
#include "compute.h"
// major opcodes
#define RETURN_STOP 0x0
#define REG_ARITHMETIC 0x1
#define REG_MOVQ 0x2
#define REG_MOVQ_MEM 0x3
#define CFLOW 0x4
#define IMM_ARITHMETIC 0x5
#define IMM_MOVQ 0x6
#define IMM_MOVQ_MEM 0x7
#define LEAQ2 0x8
#define LEAQ3 0x9
#define LEAQ6 0xA
#define LEAQ7 0xB
#define IMM_CBRANCH 0xF
// minor opcodes
#define STOP 0x0
#define RETURN 0x1
#define JMP 0xF
#define CALL 0xE
int main(int argc, char* argv[]) {
// Check command line parameters.
if (argc < 2)
error("missing name of programfile to simulate");
if (argc < 3)
error("Missing starting address (in hex notation)");
/*** SETUP ***/
// We set up global state through variables that are preserved between cycles.
// Program counter / Instruction Pointer
ip_reg_p ip = ip_reg_create();
// Register file:
reg_p regs = regs_create();
// Memory:
// Shared memory for both instructions and data.
mem_p mem = memory_create();
memory_read_from_file(mem, argv[1]);
int start;
int scan_res = sscanf(argv[2],"%x", &start);
if (scan_res != 1)
error("Unable to interpret starting address");
// We must setup argv from commandline before enabling tracefile
// validation.
if (argc > 4) { // one or more additional arguments specified.
if (strcmp(argv[3],"--") != 0)
error("3rd arg must be '--' if additional args are provided");
// arguments beyond '--' are loaded into argv area in memory
memory_load_argv(mem, argc - 4, argv + 4);
} else
memory_load_argv(mem, 0, NULL);
// memory is now set up correctly, and we can enable tracefile
// validation if a tracefile has been specified.
if (argc == 4) { // tracefile specified, hook memories to it
memory_tracefile(mem, argv[3]);
regs_tracefile(regs, argv[3]);
ip_reg_tracefile(ip, argv[3]);
}
ip_write(ip, from_int(start), true);
// a stop signal for stopping the simulation.
bool stop = false;
// We need the instruction number to show how far we get
int instruction_number = 0;
while (!stop) { // SIMULATION BEGINS - for each cycle:
/*** FETCH ***/
val pc = ip_read(ip);
++instruction_number;
printf("%d %lx\n", instruction_number, pc.val);
// We're fetching 10 bytes in the form of 10 vals with one byte each
// depending on the instruction we may not use all of them
val inst_bytes[10];
memory_read_into_buffer(mem, pc, inst_bytes, true);
/*** DECODE ***/
// read 4 bit segments of the instruction. The following 6 segments
// are, if present, always located at the same position in the instruction
val major_op = pick_bits(4, 4, inst_bytes[0]);
val minor_op = pick_bits(0, 4, inst_bytes[0]);
val reg_d = pick_bits(4, 4, inst_bytes[1]);
val reg_s = pick_bits(0, 4, inst_bytes[1]);
val reg_z = pick_bits(4, 4, inst_bytes[2]);
val shamt = pick_bits(0, 4, inst_bytes[2]);
// decode instruction type from major operation code
bool is_return_or_stop = is(RETURN_STOP, major_op);
bool is_reg_arithmetic = is(REG_ARITHMETIC, major_op);
bool is_imm_arithmetic = is(IMM_ARITHMETIC, major_op);
bool is_reg_movq = is(REG_MOVQ, major_op);
bool is_imm_movq = is(IMM_MOVQ, major_op);
bool is_reg_movq_mem = is(REG_MOVQ_MEM, major_op);
bool is_imm_movq_mem = is(IMM_MOVQ_MEM, major_op);
bool is_cflow = is(CFLOW, major_op); /* note that this signal does not include return - though logically it could */
bool is_leaq2 = is(LEAQ2, major_op);
bool is_leaq3 = is(LEAQ3, major_op);
bool is_leaq6 = is(LEAQ6, major_op);
bool is_leaq7 = is(LEAQ7, major_op);
bool is_imm_cbranch = is(IMM_CBRANCH, major_op);
// Right now, we can only execute instructions with a size of 2.
// TODO 2021:
// from info above determine the instruction size
val ins_size = from_int(2);
// broad categorization of the instruction
bool is_leaq = is_leaq2 || is_leaq3 || is_leaq6 || is_leaq7;
bool is_move = is_reg_movq || is_reg_movq_mem || is_imm_movq || is_imm_movq_mem;
bool is_mem_access = is_reg_movq_mem || is_imm_movq_mem;
bool is_call = is_cflow && is(CALL, minor_op);
bool is_return = is_return_or_stop & is(RETURN, minor_op);
bool is_stop = is_return_or_stop & is(STOP, minor_op);
// picking the proper immediate positions within the instruction:
bool imm_i_pos3 = is_leaq7; /* all other at position 2 */
bool imm_p_pos6 = is_imm_cbranch; /* all other at position 2 */
// unimplemented control signals:
bool is_load = false; // TODO 2021: Detect when we're executing a load
bool is_store = false; // TODO 2021: Detect when we're executing a store
bool is_conditional = false; // TODO 2021: Detect if we are executing a conditional flow change
// TODO 2021: Add additional control signals you may need below....
// setting up operand fetch and register read and write for the datapath:
bool use_imm = is_imm_movq | is_imm_arithmetic | is_imm_cbranch;
val reg_read_dz = or(use_if(!is_leaq, reg_d), use_if(is_leaq, reg_z));
// - other read port is always reg_s
// - write is always to reg_d
bool reg_wr_enable = is_reg_arithmetic || is_imm_arithmetic || is_leaq || is_load || is_reg_movq || is_imm_movq || is_call;
// control signals for the compute section:
// - pick result of compute section
bool use_agen = is_leaq || is_move;
bool is_arithmetic = is_imm_arithmetic | is_reg_arithmetic;
bool use_multiplier = is_arithmetic && (is(MUL, minor_op) || is(IMUL, minor_op));
bool use_shifter = is_arithmetic && (is(SAR, minor_op) || is(SAL, minor_op) || is(SHR, minor_op));
bool use_direct = is_reg_movq || is_imm_movq;
bool use_alu = (is_arithmetic || is_conditional) && !(use_shifter | use_multiplier);
// - control for agen
bool use_s = (is(1,pick_bits(0,1,minor_op)) && use_agen) || is_reg_arithmetic || is_cflow;
bool use_z = is(1,pick_bits(1,1,minor_op)) && use_agen;
bool use_d = (is(1,pick_bits(2,1,minor_op)) && use_agen) || is_imm_arithmetic || is_imm_cbranch;
// - control for the ALU (too easy)
val alu_ctrl = minor_op;
// - control for the multiplier
bool mul_is_signed = is(IMUL, minor_op);
// - control for the shifter
bool shft_is_signed = is(SAR, minor_op) | is(SAL, minor_op);
bool shft_is_left = is(SAL, minor_op);
/*** EXECUTE ***/
// Datapath:
//
// read immediates based on instruction type from the instruction buffer
val imm_offset_2 = or(or(put_bits(0, 8, inst_bytes[2]), put_bits(8,8, inst_bytes[3])),
or(put_bits(16, 8, inst_bytes[4]), put_bits(24,8, inst_bytes[5])));
val imm_offset_3 = or(or(put_bits(0, 8, inst_bytes[3]), put_bits(8,8, inst_bytes[4])),
or(put_bits(16, 8, inst_bytes[5]), put_bits(24,8, inst_bytes[6])));
val imm_offset_6 = or(or(put_bits(0, 8, inst_bytes[6]), put_bits(8,8, inst_bytes[7])),
or(put_bits(16, 8, inst_bytes[8]), put_bits(24,8, inst_bytes[9])));
val imm_i = or(use_if( !imm_i_pos3, imm_offset_2), use_if( imm_i_pos3, imm_offset_3));
val imm_p = or(use_if( !imm_p_pos6, imm_offset_2), use_if( imm_p_pos6, imm_offset_6));
val sext_imm_i = sign_extend(31, imm_i);
val sext_imm_p = sign_extend(31, imm_p);
// read registers
val reg_out_a = reg_read(regs, reg_read_dz);
val reg_out_b = reg_read(regs, reg_s);
val op_b = or(use_if(use_imm, sext_imm_i), use_if(!use_imm, reg_out_b));
// perform calculations
val agen_result = address_generate(reg_out_a, reg_out_b, sext_imm_i,
shamt, use_z, use_s, use_d);
val alu_result = alu_execute(alu_ctrl, reg_out_a, op_b);
val mul_result = multiplier(mul_is_signed, reg_out_a, op_b);
val shifter_result = shifter(shft_is_left, shft_is_signed, reg_out_a, op_b);
val compute_result = or(use_if(use_agen, agen_result),
or(use_if(use_multiplier, mul_result),
or(use_if(use_shifter, shifter_result),
or(use_if(use_direct, op_b),
use_if(use_alu, alu_result)))));
// address of succeeding instruction in memory
val pc_incremented = add(pc, ins_size);
// determine the next position of the program counter
// TODO 2021: Add any additional sources for the next PC (for call, ret, jmp and conditional branch)
val pc_next = pc_incremented;
/*** MEMORY ***/
// read from memory if needed
val mem_out = memory_read(mem, agen_result, is_load);
/*** WRITE ***/
// choose result to write back to register
// TODO 2021: Add any additional results which need to be muxed in for writing to the destination register
bool use_compute_result = !is_load && (use_agen || use_multiplier || use_shifter || use_direct || use_alu);
val datapath_result = or(use_if(use_compute_result, compute_result),
use_if(is_load, mem_out));
// write to register if needed
reg_write(regs, reg_d, datapath_result, reg_wr_enable);
// write to memory if needed
memory_write(mem, agen_result, reg_out_a, is_store);
// update program counter
ip_write(ip, pc_next, true);
// terminate when returning to zero
if (is_stop || (pc_next.val == 0 && is_return)) stop = true;
}
memory_destroy(mem);
regs_destroy(regs);
printf("Done\n");
}

250
A5/memory.c Normal file
View File

@ -0,0 +1,250 @@
#include <stdio.h>
#include <stdlib.h>
#include "memory.h"
#include "trace_read.h"
#include "support.h"
#define BLOCK_SIZE 16384
#define BLOCK_MASK (BLOCK_SIZE - 1)
typedef uint64_t word;
typedef uint8_t byte;
struct block {
word start_addr;
byte* data;
};
struct memory {
struct block* blocks;
int num_blocks;
trace_p m_tracer;
trace_p i_tracer;
trace_p o_tracer;
};
mem_p memory_create() {
mem_p res = (mem_p) malloc(sizeof(struct memory));
res->num_blocks = 0;
res->blocks = 0;
res->m_tracer = 0;
return res;
}
void memory_destroy(mem_p mem) {
for (int i = 0; i < mem->num_blocks; ++i) {
free(mem->blocks[i].data);
}
free(mem->blocks);
if (mem->m_tracer) {
if (!trace_all_matched(mem->m_tracer))
error("Parts of trace for memory writes was not matched");
trace_reader_destroy(mem->m_tracer);
}
if (mem->i_tracer) {
if (!trace_all_matched(mem->i_tracer))
error("Parts of trace for input was not matched");
trace_reader_destroy(mem->i_tracer);
}
if (mem->o_tracer) {
if (!trace_all_matched(mem->o_tracer))
error("Parts of trace for output was not matched");
trace_reader_destroy(mem->o_tracer);
}
free(mem);
}
void memory_tracefile(mem_p mem, const char* filename) {
mem->m_tracer = trace_reader_create('M', filename);
mem->i_tracer = trace_reader_create('I', filename);
mem->o_tracer = trace_reader_create('O', filename);
}
struct block* get_block(mem_p mem, word start_addr) {
struct block* bp = 0;
for (int i = 0; i < mem->num_blocks; ++i) {
if (mem->blocks[i].start_addr == start_addr) {
bp = &mem->blocks[i];
break;
}
}
if (bp == 0) {
mem->blocks = realloc(mem->blocks, (mem->num_blocks + 1) * sizeof(struct block));
mem->blocks[mem->num_blocks].data = malloc(sizeof(unsigned char) * BLOCK_SIZE);
mem->blocks[mem->num_blocks].start_addr = start_addr;
bp = &mem->blocks[mem->num_blocks];
mem->num_blocks++;
}
return bp;
}
/* uses byte addresses */
word memory_read_byte(mem_p mem, word byte_addr) {
word byte_number = byte_addr & BLOCK_MASK;
word block_addr = byte_addr - byte_number;
struct block* bp = get_block(mem, block_addr);
return bp->data[byte_number];
}
void memory_write_byte(mem_p mem, word byte_addr, word byte) {
word byte_number = byte_addr & BLOCK_MASK;
word block_addr = byte_addr - byte_number;
struct block* bp = get_block(mem, block_addr);
bp->data[byte_number] = byte;
}
word memory_read_quad(mem_p mem, word byte_addr) {
word res = memory_read_byte(mem, byte_addr++);
res = res | (memory_read_byte(mem, byte_addr++) << 8);
res = res | (memory_read_byte(mem, byte_addr++) << 16);
res = res | (memory_read_byte(mem, byte_addr++) << 24);
res = res | (memory_read_byte(mem, byte_addr++) << 32);
res = res | (memory_read_byte(mem, byte_addr++) << 40);
res = res | (memory_read_byte(mem, byte_addr++) << 48);
res = res | (memory_read_byte(mem, byte_addr++) << 56);
return res;
}
void memory_write_quad(mem_p mem, word byte_addr, word value) {
memory_write_byte(mem, byte_addr++, value); value >>= 8;
memory_write_byte(mem, byte_addr++, value); value >>= 8;
memory_write_byte(mem, byte_addr++, value); value >>= 8;
memory_write_byte(mem, byte_addr++, value); value >>= 8;
memory_write_byte(mem, byte_addr++, value); value >>= 8;
memory_write_byte(mem, byte_addr++, value); value >>= 8;
memory_write_byte(mem, byte_addr++, value); value >>= 8;
memory_write_byte(mem, byte_addr++, value); value >>= 8;
}
void error(const char*);
void memory_read_from_file(mem_p mem, const char* filename) {
FILE* f = fopen(filename, "r");
if (f == NULL) {
error("Failed to open file");
}
int res;
do {
word addr;
char buf[21]; // most we'll need, plus terminating 0
res = fscanf(f, "%lx : ", &addr);
if (res != EOF) {
res = fscanf(f, " %[0123456789ABCDEFabcdef]", buf);
if (res == 1) {
//printf("%lx : %s\n", addr, buf);
char* p = buf;
while (*p != 0) {
// convert byte by byte (= 2 char at a time)
char buf2[3];
buf2[0] = *p++;
buf2[1] = *p++;
buf2[2] = 0;
int byte_from_hex;
sscanf(buf2, "%x", &byte_from_hex);
memory_write_byte(mem, addr, byte_from_hex);
int check = memory_read_byte(mem, addr);
if (check != byte_from_hex)
printf("Memory error: at %lx, wrote %x, read back %x\n", addr, byte_from_hex, check);
addr++;
}
}
// fscanf(f,"#");
while ('\n' != getc(f));
}
} while (res != EOF);
fclose(f);
}
// read 10 bytes from memory, unaligned, uses byte addressing
void memory_read_into_buffer(mem_p mem, val address, val bytes[], bool enable) {
word addr = address.val;
for (int i = 0; i < 10; ++i) {
if (enable)
bytes[i] = from_int(memory_read_byte(mem, addr + i));
else
bytes[i] = from_int(0);
}
}
bool is_io_device(val address) {
return address.val >= 0x10000000 && address.val < 0x20000000;
}
bool is_argv_area(val address) {
return address.val >= 0x20000000 && address.val < 0x30000000;
}
val memory_read(mem_p mem, val address, bool enable) {
if (!enable) return from_int(0);
if (is_io_device(address)) {
val retval;
if (mem->i_tracer) {
if (trace_match_and_get_next(mem->i_tracer, address, &retval))
return retval;
else
error("Trace mismatch on input from device");
}
if (address.val == 0x10000000) {
int status;
status = scanf("%lx", &retval.val);
(void)status; // silence warning - we should perhaps one day check this?
}
else if (address.val == 0x10000001) retval.val = rand();
else error("Input from unknown port");
return retval;
}
else if (is_argv_area(address)) {
val retval;
if (mem->i_tracer) {
if (trace_match_and_get_next(mem->i_tracer, address, &retval))
return retval;
else
error("Trace mismatch on read from argv area");
}
// if no tracer, just access arguments from memory. Presumably set from commandline
return from_int(memory_read_quad(mem, address.val));
}
else {
return from_int(memory_read_quad(mem, address.val));
}
}
void memory_write(mem_p mem, val address, val value, bool wr_enable) {
if (wr_enable) {
if (is_io_device(address)) {
if (mem->o_tracer) {
if (trace_match_next(mem->o_tracer, address, value))
return;
else
error("Trace mismatch on output to device");
}
if (address.val == 0x10000002) printf("%lx ", value.val);
else error("Output to unknown port");
} else {
// With respect to writes, we treat the argv area as a normal memory area
if (trace_match_next(mem->m_tracer, address, value))
memory_write_quad(mem, address.val, value.val);
else
error("Trace mismatch on write to memory");
}
}
}
void memory_load_argv(mem_p mem, int argc, char* argv[]) {
val address;
address.val = 0x20000000;
val value;
value.val = argc;
memory_write(mem, address, value, true);
for (int k = 0; k < argc; ++k) {
int v;
int res = sscanf(argv[k],"%d", &v);
if (res != 1)
error("Invalid command line argument");
address.val += 8;
value.val = v;
memory_write(mem, address, value, true);
}
}

38
A5/memory.h Normal file
View File

@ -0,0 +1,38 @@
/*
Memory elements and IO devices
Memory resizes dynamically to accomodate usage.
IO Devices are located at addresses 0x1000000000 to 0x1FFFFFFF.
Three devices are implemented:
0x10000000 Input quadword from standard input
0x10000001 Input pseudo-random quadword
0x00000002 Output quadword to standard output
*/
#include "wires.h"
struct memory;
typedef struct memory *mem_p;
mem_p memory_create();
void memory_destroy(mem_p);
void memory_read_from_file(mem_p, const char* filename);
// set a tracefile for validation of memory writes and input/output
void memory_tracefile(mem_p mem, const char* filename);
// Read quadword. We use little endian byte-addressing and support unaligned access
// If the address is to an input device, input will be performed instead of memory access
val memory_read(mem_p, val address, bool enable);
// Write quadword with new value at rising edge of clock.
// There are no internal forwarding from write to read in same clock period
// Little endian byte-addressing and unaligned access is supported
// If the address is to an output device, output will be performed instead of memory access
void memory_write(mem_p, val address, val value, bool wr_enable);
// read 10 bytes unaligned, for instruction fetch
void memory_read_into_buffer(mem_p, val address, val bytes[], bool enable);
// parse argument vector and load it into simulated argv area
void memory_load_argv(mem_p, int argc, char* argv[]);

49
A5/registers.c Normal file
View File

@ -0,0 +1,49 @@
/*
Implementation of x86prime 16 registers
*/
#include "registers.h"
#include "support.h"
#include "trace_read.h"
#include <stdio.h>
#include <stdlib.h>
struct registers {
trace_p tracer;
val data[16];
};
reg_p regs_create() {
reg_p regs = (reg_p) malloc(sizeof(struct registers));
for (int i = 0; i < 16; ++i)
regs->data[i] = from_int(0);
regs->tracer = 0;
return regs;
}
void regs_destroy(reg_p regs) {
if (regs->tracer) {
if (!trace_all_matched(regs->tracer))
error("Parts of trace for register writes was not matched");
trace_reader_destroy(regs->tracer);
}
free(regs);
}
void regs_tracefile(reg_p regs, const char *filename) {
regs->tracer = trace_reader_create('R', filename);
}
val reg_read(reg_p regs, val reg_num) {
return regs->data[reg_num.val & 0x0F];
}
void reg_write(reg_p regs, val reg_num, val value, bool wr_enable) {
if (wr_enable) {
if (trace_match_next(regs->tracer, reg_num, value))
regs->data[reg_num.val & 0x0F] = value;
else
error("Trace mismatch on write to register");
}
}

19
A5/registers.h Normal file
View File

@ -0,0 +1,19 @@
/*
Registers
A model of the 16 registers in x86prime
*/
#include "wires.h"
struct registers;
typedef struct registers *reg_p;
reg_p regs_create();
void regs_destroy(reg_p);
// associate with a tracefile for verification
void regs_tracefile(reg_p regs, const char *filename);
val reg_read(reg_p regs, val reg_num);
void reg_write(reg_p regs, val reg_num, val value, bool wr_enable);

9
A5/support.c Normal file
View File

@ -0,0 +1,9 @@
#include <stdio.h>
#include <stdlib.h>
#include "support.h"
void error(const char* message) {
fprintf(stderr, "%s\n", message);
exit(-1);
}

7
A5/support.h Normal file
View File

@ -0,0 +1,7 @@
/*
Support functions. Just one for now.
*/
// print an error and exit
void error(const char* message);

67
A5/test.sh Executable file
View File

@ -0,0 +1,67 @@
#!/bin/bash
### USAGE
# All test must x86prime files (*.prime), located in tests
# All test must start with a label "test:" from which the test start
# You can insert a "jmp myprogram" as the first instruction, if your program starts elsewhere
# Exit immediately if any command below fails.
set -e
# Ensure latest version
make
# The command with which you run PRUN: You should likely change this variable
PRUN=prun
# The command with which you run PRASM: You should likely change this variable
PRASM=prasm
TESTLOC=tests
TESTDIR=test_runs
if [[ ! -d "${TESTLOC}" ]] ; then
echo "Cannot find the test location ${TESTLOC}"
exit
fi
echo ">> I will now test all *.prime files in ${TESTLOC}/"
echo "Generating a test_runs directory.."
mkdir -p $TESTDIR
rm -f $TESTDIR/*
echo "Running the tests.."
exitcode=0
for f in tests/*.prime; do
filename=${f#"$TESTLOC/"}
fname=${filename%.prime}
echo ">>> Testing ${filename}.."
# Generate hex file
hexfile=$TESTDIR/$fname.hex
$PRASM $f
mv $TESTLOC/$fname.hex $TESTDIR/
mv $TESTLOC/$fname.sym $TESTDIR/
# Generate trace file
tracefile=$TESTDIR/$fname.trc
$PRUN $hexfile test -tracefile $tracefile
set +e # Continue after failed trace
./sim $hexfile 0x0 $tracefile > $TESTDIR/$fname.out
set -e
if [ ! $(grep Done $TESTDIR/$fname.out) ]
then
echo "Failed :-("
echo "For details, see $TESTDIR/$fname.out"
exitcode=1
else
echo "Success :-)"
fi
done
exit $exitcode

99
A5/trace_read.c Normal file
View File

@ -0,0 +1,99 @@
/*
Trace reader implementation
*/
#include <stdio.h>
#include <stdlib.h>
#include "support.h"
#include "trace_read.h"
typedef uint64_t word;
struct trace_reader {
FILE* trace_file;
char filter;
bool next_valid;
word next_addr;
word next_value;
};
trace_p trace_reader_create(char filter, const char* filename) {
FILE* f = fopen(filename, "r");
if (f == NULL)
error("Failed to open tracefile");
trace_p tracer = malloc(sizeof(struct trace_reader));
tracer->trace_file = f;
tracer->filter = filter;
tracer->next_valid = false;
return tracer;
}
void trace_reader_destroy(trace_p tracer) {
fclose(tracer->trace_file);
free(tracer);
}
void get_next_if_needed_and_possible(trace_p tracer) {
if (tracer->next_valid) return; /* no need */
int domain;
do {
domain = getc(tracer->trace_file); /* every line starts with the domain */
if (domain == EOF) return; /* trace ended */
int res = fscanf(tracer->trace_file, " %lx %lx ", &tracer->next_addr, &tracer->next_value);
if (res != 2)
error("Wrong trace format"); /* couldn't read the entry??? */
} while (domain != tracer->filter); /* skip other domains */
tracer->next_valid = true;
}
bool trace_match_next(trace_p tracer, val address, val value) {
if (tracer == 0) return true; // no trace file - condition trivially true
get_next_if_needed_and_possible(tracer);
if (!tracer->next_valid) {
printf(" -- end of tracefile reached, while trying to match '%c' %lx <- %lx\n",
tracer->filter, address.val, value.val);
return false;
}
if (tracer->next_addr != address.val) {
printf(" -- address mismatch, access '%c' %lx, but tracefile expected address: %lx\n",
tracer->filter, address.val, tracer->next_addr);
return false;
}
if (tracer->next_value != value.val) {
printf(" -- value mismatch, access '%c' %lx\n", tracer->filter, address.val);
printf(" -- with value %lx, but tracefile expected %lx\n", value.val, tracer->next_value);
return false;
}
/* matched! */
tracer->next_valid = false; /* we just matched it */
return true;
}
bool trace_match_and_get_next(trace_p tracer, val address, val* value) {
if (tracer == 0) return true; // no trace file
get_next_if_needed_and_possible(tracer);
if (!tracer->next_valid) {
printf(" -- end of tracefile reached, while trying to match '%c' %lx <- <<some value>>\n",
tracer->filter, address.val);
return false;
}
if (tracer->next_addr != address.val) {
printf(" -- address mismatch, access '%c' %lx, but tracefile expected address: %lx\n",
tracer->filter, address.val, tracer->next_addr);
return false;
}
value->val = tracer->next_value;
tracer->next_valid = false;
return true;
}
bool trace_all_matched(trace_p tracer) {
if (tracer == 0) return true; // no trace file - condition trivially true
get_next_if_needed_and_possible(tracer);
return !tracer->next_valid;
}

17
A5/trace_read.h Normal file
View File

@ -0,0 +1,17 @@
/*
trace reader. Used by memories to validate changes against a trace built by x86prime
*/
#include "wires.h"
struct trace_reader;
typedef struct trace_reader *trace_p;
trace_p trace_reader_create(char filter, const char* filename);
void trace_reader_destroy(trace_p tracer);
bool trace_match_next(trace_p tracer, val address, val value); // true if matched
bool trace_match_and_get_next(trace_p tracer, val address, val* value); // true if matched AND enabled
bool trace_all_matched(trace_p tracer);

98
A5/wires.c Normal file
View File

@ -0,0 +1,98 @@
#include <stdlib.h>
#include <stdio.h>
#include "wires.h"
hilo unzip(val value) {
uint64_t hi, lo, val;
val = value.val;
hi = lo = 0;
for (int i=0; i<32; i++) {
lo |= (val & 1) << i;
val >>= 1;
hi |= (val & 1) << i;
val >>= 1;
}
hilo result;
result.hi = from_int(hi);
result.lo = from_int(lo);
return result;
}
val zip(hilo values) {
uint64_t hi = values.hi.val;
uint64_t lo = values.lo.val;
uint64_t result = 0;
for (int i=0; i<32; i++) {
result |= (hi & 1) << (2*i+1);
hi >>= 1;
result |= (lo & 1) << (2*i);
lo >>= 1;
}
return from_int(result);
}
val pick_bits(int lsb, int sz, val value) {
uint64_t v = value.val;
v >>= lsb;
if (sz < 64) {
uint64_t mask = 1;
mask <<= sz;
mask -= 1;
v &= mask;
}
return from_int(v);
}
val put_bits(int lsb, int sz, val value) {
val masked = pick_bits(0,sz,value);
masked.val <<= lsb;
return masked;
}
val pick_bits_arr(int msb, int sz, val arr[]) {
if (sz > 64) {
fprintf(stderr, "error: pick_bits_arr called with sz > 64");
exit(EXIT_FAILURE);
}
int offset = msb % 8;
int start_byte = msb / 8;
int covered_bytes = sz / 8;
uint64_t retval = 0;
for(int i = start_byte; i < covered_bytes; i++) {
retval += ((uint64_t) (arr[i].val)) >> (offset + i * 8);
}
uint64_t mask = ((uint64_t)-1) >> (64 - offset);
retval &= mask;
return from_int(retval);
}
bool pick_one(int position, val value) {
return ((value.val >> position) & 1) == 1;
}
val from_int(uint64_t v) {
val val;
val.val = v;
return val;
}
val reverse_bytes(int num_bytes, val value) {
uint64_t val = value.val;
uint64_t res = 0;
while (num_bytes--) {
res <<= 8;
res |= val & 0xFF;
val >>= 8;
}
return from_int(res);
}
val sign_extend(int sign_position, val value) {
uint64_t sign = value.val & (((uint64_t)1) << sign_position);
return from_int(value.val - (sign << 1));
}

56
A5/wires.h Normal file
View File

@ -0,0 +1,56 @@
/*
Elementary functions for digital logic simulation
All functions declared here corresponds to wire connections.
No "real" computation is being carried out by them.
A single wire, when used as a control signal, is represented by the type 'bool'
Multiple wires, or a single wire not used as a control signal, is represented
by the type 'val'
For control signals (bools) you can use C built-in operators.
*/
#ifndef WIRES_H
#define WIRES_H
#include <inttypes.h>
#include <stdbool.h>
// A generic bitvector - max 64 bits, though. By accident sufficient for our needs :-)
typedef struct { uint64_t val; } val;
// A pair of bitvectors - used by zip() and unzip()
typedef struct {
val hi;
val lo;
} hilo;
// simple conversion
val from_int(uint64_t);
// unzip pairwise into two bitvectors holding even/odd bits
hilo unzip(val);
// zip a pair of bitvectors into one.
val zip(hilo);
// pick a set of bits from a value
// lsb: index of least significant bit
// sz: size
val pick_bits(int lsb, int sz, val);
// put sz least significant bits from val at position lsb in result.
// rest of result is 0.
val put_bits(int lsb, int sz, val);
// pick a single bit from a value
bool pick_one(int position, val);
// reverse the order of bytes within value
val reverse_bytes(int num_bytes, val value);
// sign extend by copying a sign bit to all higher positions
val sign_extend(int sign_position, val value);
#endif