Files
meow_base/tests/shared.py
2023-02-03 16:07:09 +01:00

295 lines
6.1 KiB
Python

"""
This file contains shared functions and variables used within multiple tests.
Author(s): David Marchant
"""
from core.functionality import make_dir, rmtree
# testing
TEST_MONITOR_BASE = "test_monitor_base"
TEST_HANDLER_BASE = "test_handler_base"
TEST_JOB_OUTPUT = "test_job_output"
def setup():
make_dir(TEST_MONITOR_BASE, ensure_clean=True)
make_dir(TEST_HANDLER_BASE, ensure_clean=True)
make_dir(TEST_JOB_OUTPUT, ensure_clean=True)
def teardown():
rmtree(TEST_MONITOR_BASE)
rmtree(TEST_HANDLER_BASE)
rmtree(TEST_JOB_OUTPUT)
rmtree("first")
# Recipe funcs
BAREBONES_PYTHON_SCRIPT = [
""
]
COMPLETE_PYTHON_SCRIPT = [
"import os",
"# Setup parameters",
"num = 1000",
"infile = 'somehere/particular'",
"outfile = 'nowhere/particular'",
"",
"with open(infile, 'r') as file:",
" s = float(file.read())",
""
"for i in range(num):",
" s += i",
"",
"div_by = 4",
"result = s / div_by",
"",
"print(result)",
"",
"os.makedirs(os.path.dirname(outfile), exist_ok=True)",
"",
"with open(outfile, 'w') as file:",
" file.write(str(result))",
"",
"print('done')"
]
# Jupyter notebooks
BAREBONES_NOTEBOOK = {
"cells": [],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 4
}
COMPLETE_NOTEBOOK = {
"cells": [
{
"cell_type": "code",
"execution_count": None,
"metadata": {},
"outputs": [],
"source": "# The first cell\n\ns = 0\nnum = 1000"
},
{
"cell_type": "code",
"execution_count": None,
"metadata": {},
"outputs": [],
"source": "for i in range(num):\n s += i"
},
{
"cell_type": "code",
"execution_count": None,
"metadata": {},
"outputs": [],
"source": "div_by = 4"
},
{
"cell_type": "code",
"execution_count": None,
"metadata": {},
"outputs": [],
"source": "result = s / div_by"
},
{
"cell_type": "code",
"execution_count": None,
"metadata": {},
"outputs": [],
"source": "print(result)"
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
APPENDING_NOTEBOOK = {
"cells": [
{
"cell_type": "code",
"execution_count": None,
"metadata": {},
"outputs": [],
"source": [
"# Default parameters values\n",
"# The line to append\n",
"extra = 'This line comes from a default pattern'\n",
"# Data input file location\n",
"infile = 'start/alpha.txt'\n",
"# Output file location\n",
"outfile = 'first/alpha.txt'"
]
},
{
"cell_type": "code",
"execution_count": None,
"metadata": {},
"outputs": [],
"source": [
"# load in dataset. This should be a text file\n",
"with open(infile) as input_file:\n",
" data = input_file.read()"
]
},
{
"cell_type": "code",
"execution_count": None,
"metadata": {},
"outputs": [],
"source": [
"# Append the line\n",
"appended = data + '\\n' + extra"
]
},
{
"cell_type": "code",
"execution_count": None,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"# Create output directory if it doesn't exist\n",
"output_dir_path = os.path.dirname(outfile)\n",
"\n",
"if output_dir_path:\n",
" os.makedirs(output_dir_path, exist_ok=True)\n",
"\n",
"# Save added array as new dataset\n",
"with open(outfile, 'w') as output_file:\n",
" output_file.write(appended)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6 (main, Nov 14 2022, 16:10:14) [GCC 11.3.0]"
},
"vscode": {
"interpreter": {
"hash": "916dbcbb3f70747c44a77c7bcd40155683ae19c65e1c03b4aa3499c5328201f1"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}
ADDING_NOTEBOOK = {
"cells": [
{
"cell_type": "code",
"execution_count": None,
"metadata": {},
"outputs": [],
"source": [
"# Default parameters values\n",
"# Amount to add to data\n",
"extra = 10\n",
"# Data input file location\n",
"infile = 'example_data/data_0.npy'\n",
"# Output file location\n",
"outfile = 'standard_output/data_0.npy'"
]
},
{
"cell_type": "code",
"execution_count": None,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import os"
]
},
{
"cell_type": "code",
"execution_count": None,
"metadata": {},
"outputs": [],
"source": [
"# load in dataset. Should be numpy array\n",
"data = np.load(infile)\n"
]
},
{
"cell_type": "code",
"execution_count": None,
"metadata": {},
"outputs": [],
"source": [
"# Add an amount to all the values in the array\n",
"added = data + int(float(extra))\n",
"\n",
"added"
]
},
{
"cell_type": "code",
"execution_count": None,
"metadata": {},
"outputs": [],
"source": [
"# Create output directory if it doesn't exist\n",
"output_dir_path = os.path.dirname(outfile)\n",
"\n",
"if output_dir_path:\n",
" os.makedirs(output_dir_path, exist_ok=True)\n",
"\n",
"# Save added array as new dataset\n",
"np.save(outfile, added)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
}
},
"nbformat": 4,
"nbformat_minor": 4
}