reformated imports for pep8 compatability
This commit is contained in:
@ -4,7 +4,8 @@ from meow_base.recipes import get_recipe_from_notebook
|
||||
|
||||
from shared import run_test, MRME
|
||||
|
||||
def multiple_rules_multiple_events(job_count:int, REPEATS, job_counter, requested_jobs, runtime_start):
|
||||
def multiple_rules_multiple_events(job_count:int, REPEATS:int, job_counter:int,
|
||||
requested_jobs:int, runtime_start:float):
|
||||
patterns = {}
|
||||
for i in range(job_count):
|
||||
pattern = FileEventPattern(
|
||||
|
@ -4,7 +4,8 @@ from meow_base.recipes import get_recipe_from_notebook
|
||||
|
||||
from shared import run_test, MRSE
|
||||
|
||||
def multiple_rules_single_event(job_count:int, REPEATS, job_counter, requested_jobs, runtime_start):
|
||||
def multiple_rules_single_event(job_count:int, REPEATS:int, job_counter:int,
|
||||
requested_jobs:int, runtime_start:float):
|
||||
patterns = {}
|
||||
for i in range(job_count):
|
||||
pattern = FileEventPattern(
|
||||
|
@ -5,14 +5,18 @@ import sys
|
||||
import time
|
||||
import os
|
||||
|
||||
from shared import JOBS_COUNTS, REPEATS, TESTS, MRME, MRSE, SRME, SRSEP, SRSES, RESULTS_DIR, BASE, GRAPH_FILENAME
|
||||
from typing import List
|
||||
|
||||
from shared import JOBS_COUNTS, REPEATS, TESTS, MRME, MRSE, SRME, SRSEP, \
|
||||
SRSES, RESULTS_DIR, BASE
|
||||
from mrme import multiple_rules_multiple_events
|
||||
from mrse import multiple_rules_single_event
|
||||
from srme import single_rule_multiple_events
|
||||
from srsep import single_rule_single_event_parallel
|
||||
from srsps import single_rule_single_event_sequential
|
||||
|
||||
from meow_base.core.correctness.vars import DEFAULT_JOB_OUTPUT_DIR, DEFAULT_JOB_QUEUE_DIR
|
||||
from meow_base.core.correctness.vars import DEFAULT_JOB_OUTPUT_DIR, \
|
||||
DEFAULT_JOB_QUEUE_DIR
|
||||
from meow_base.functionality.file_io import rmtree
|
||||
|
||||
LINE_KEYS = {
|
||||
@ -59,7 +63,7 @@ def run_tests():
|
||||
|
||||
print(f"All tests completed in: {str(time.time()-runtime_start)}")
|
||||
|
||||
def get_meow_graph(results_dir):
|
||||
def get_meow_graph(results_dir:str):
|
||||
lines = []
|
||||
|
||||
for run_type in os.listdir(results_dir):
|
||||
@ -68,24 +72,25 @@ def get_meow_graph(results_dir):
|
||||
|
||||
# lines.append((f'scheduling {run_type}', [], 'solid'))
|
||||
lines.append((run_type, [], 'solid'))
|
||||
run_type_path = os.path.join(results_dir, run_type)
|
||||
run_path = os.path.join(results_dir, run_type)
|
||||
|
||||
for job_count in os.listdir(run_type_path):
|
||||
results_path = os.path.join(run_type_path, job_count, 'results.txt')
|
||||
for job_count in os.listdir(run_path):
|
||||
results_path = os.path.join(run_path, job_count, "results.txt")
|
||||
with open(results_path, 'r') as f_in:
|
||||
data = f_in.readlines()
|
||||
|
||||
scheduling_duration = 0
|
||||
for line in data:
|
||||
if "Average schedule time: " in line:
|
||||
scheduling_duration = float(line.replace("Average schedule time: ", ''))
|
||||
scheduling_duration = float(line.replace(
|
||||
"Average schedule time: ", ''))
|
||||
|
||||
lines[-1][1].append((job_count, scheduling_duration))
|
||||
lines[-1][1].sort(key=lambda y: float(y[0]))
|
||||
|
||||
return lines
|
||||
|
||||
def make_plot(lines, graph_path, title, logged):
|
||||
def make_plot(lines:List, graph_path:str, title:str, logged:bool):
|
||||
w = 10
|
||||
h = 4
|
||||
linecount = 0
|
||||
@ -129,14 +134,19 @@ def make_plot(lines, graph_path, title, logged):
|
||||
def make_both_plots(lines, path, title, log=True):
|
||||
make_plot(lines, path, title, False)
|
||||
if log:
|
||||
logged_path = path[:path.index(".pdf")] + "_logged" + path[path.index(".pdf"):]
|
||||
logged_path = path[:path.index(".pdf")] + "_logged" \
|
||||
+ path[path.index(".pdf"):]
|
||||
make_plot(lines, logged_path, title, True)
|
||||
|
||||
|
||||
def make_graphs():
|
||||
lines = get_meow_graph(RESULTS_DIR)
|
||||
|
||||
make_both_plots(lines, "result.pdf", "MiG scheduling overheads on the Threadripper")
|
||||
make_both_plots(
|
||||
lines,
|
||||
"result.pdf",
|
||||
"MiG scheduling overheads on the Threadripper"
|
||||
)
|
||||
|
||||
average_lines = []
|
||||
all_delta_lines = []
|
||||
@ -146,20 +156,36 @@ def make_graphs():
|
||||
averages = [(i, v/float(i)) for i, v in line_values]
|
||||
average_lines.append((line_signature, averages, lines_style))
|
||||
|
||||
if line_signature not in ["total single_Pattern_single_file_sequential", "scheduling single_Pattern_single_file_sequential_jobs", "SPSFS"]:
|
||||
if line_signature not in [
|
||||
"total single_Pattern_single_file_sequential",
|
||||
"scheduling single_Pattern_single_file_sequential_jobs",
|
||||
"SPSFS"]:
|
||||
deltas = []
|
||||
for i in range(len(line_values)-1):
|
||||
deltas.append( (line_values[i+1][0], (averages[i+1][1]-averages[i][1]) / (float(averages[i+1][0])-float(averages[i][0])) ) )
|
||||
deltas.append((line_values[i+1][0],
|
||||
(averages[i+1][1]-averages[i][1]) \
|
||||
/ (float(averages[i+1][0])-float(averages[i][0]))))
|
||||
no_spsfs_delta_lines.append((line_signature, deltas, lines_style))
|
||||
deltas = []
|
||||
for i in range(len(line_values)-1):
|
||||
deltas.append( (line_values[i+1][0], (averages[i+1][1]-averages[i][1]) / (float(averages[i+1][0])-float(averages[i][0])) ) )
|
||||
deltas.append((line_values[i+1][0],
|
||||
(averages[i+1][1]-averages[i][1]) \
|
||||
/ (float(averages[i+1][0])-float(averages[i][0]))))
|
||||
all_delta_lines.append((line_signature, deltas, lines_style))
|
||||
|
||||
|
||||
make_both_plots(average_lines, "result_averaged.pdf", "Per-job MiG scheduling overheads on the Threadripper")
|
||||
make_both_plots(
|
||||
average_lines,
|
||||
"result_averaged.pdf",
|
||||
"Per-job MiG scheduling overheads on the Threadripper"
|
||||
)
|
||||
|
||||
make_both_plots(all_delta_lines, "result_deltas.pdf", "Difference in per-job MiG scheduling overheads on the Threadripper", log=False)
|
||||
make_both_plots(
|
||||
all_delta_lines,
|
||||
"result_deltas.pdf",
|
||||
"Difference in per-job MiG scheduling overheads on the Threadripper",
|
||||
log=False
|
||||
)
|
||||
|
||||
if __name__ == '__main__':
|
||||
try:
|
||||
@ -172,4 +198,4 @@ if __name__ == '__main__':
|
||||
try:
|
||||
sys.exit(1)
|
||||
except SystemExit:
|
||||
os._exit(1)
|
||||
os._exit(1)
|
||||
|
@ -6,9 +6,12 @@ import pathlib
|
||||
import time
|
||||
import yaml
|
||||
|
||||
from typing import Any, Dict, Tuple
|
||||
from typing import Any, Dict, Tuple, List
|
||||
|
||||
from meow_base.core.correctness.vars import DEFAULT_JOB_OUTPUT_DIR, DEFAULT_JOB_QUEUE_DIR
|
||||
from meow_base.core.correctness.vars import DEFAULT_JOB_OUTPUT_DIR, \
|
||||
DEFAULT_JOB_QUEUE_DIR
|
||||
from meow_base.core.base_pattern import BasePattern
|
||||
from meow_base.core.base_recipe import BaseRecipe
|
||||
from meow_base.core.runner import MeowRunner
|
||||
from meow_base.patterns.file_event_pattern import WatchdogMonitor
|
||||
from meow_base.recipes.jupyter_notebook_recipe import PapermillHandler
|
||||
@ -17,9 +20,13 @@ from meow_base.functionality.file_io import rmtree
|
||||
|
||||
RESULTS_DIR = "results"
|
||||
BASE = "benchmark_base"
|
||||
GRAPH_FILENAME = "graph.pdf"
|
||||
REPEATS = 10
|
||||
JOBS_COUNTS = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 250, 300, 400, 500]
|
||||
JOBS_COUNTS = [
|
||||
10, 20, 30, 40, 50,
|
||||
60, 70, 80, 90, 100,
|
||||
125, 150, 175, 200,
|
||||
250, 300, 400, 500
|
||||
]
|
||||
|
||||
SRME = "single_rule_multiple_events"
|
||||
MRSE = "multiple_rules_single_event"
|
||||
@ -42,10 +49,11 @@ class DummyConductor(LocalPythonConductor):
|
||||
return False, ">:("
|
||||
|
||||
|
||||
def datetime_to_timestamp(date_time_obj):
|
||||
return time.mktime(date_time_obj.timetuple()) + float(date_time_obj.microsecond)/1000000
|
||||
def datetime_to_timestamp(date_time_obj:datetime):
|
||||
return time.mktime(date_time_obj.timetuple()) \
|
||||
+ float(date_time_obj.microsecond)/1000000
|
||||
|
||||
def generate(file_count, file_path, file_type='.txt'):
|
||||
def generate(file_count:int, file_path:str, file_type:str=".txt"):
|
||||
first_filename = ''
|
||||
start = time.time()
|
||||
for i in range(int(file_count)):
|
||||
@ -56,7 +64,8 @@ def generate(file_count, file_path, file_type='.txt'):
|
||||
f.write('0')
|
||||
return first_filename, time.time() - start
|
||||
|
||||
def cleanup(jobs, file_out, base_time, gen_time, execution=False):
|
||||
def cleanup(jobs:List[str], file_out:str, base_time:float, gen_time:float,
|
||||
execution:bool=False):
|
||||
if not jobs:
|
||||
return
|
||||
|
||||
@ -116,27 +125,30 @@ def cleanup(jobs, file_out, base_time, gen_time, execution=False):
|
||||
|
||||
return total_time
|
||||
|
||||
def mean(l):
|
||||
def mean(l:List):
|
||||
return sum(l)/len(l)
|
||||
|
||||
def collate_results(base_results_dir):
|
||||
|
||||
def collate_results(base_dir:str):
|
||||
scheduling_delays = []
|
||||
|
||||
for run in os.listdir(base_results_dir):
|
||||
for run in os.listdir(base_dir):
|
||||
if run != 'results.txt':
|
||||
with open(os.path.join(base_results_dir, run, 'results.txt'), 'r') as f:
|
||||
with open(os.path.join(base_dir, run, "results.txt"), 'r') as f:
|
||||
d = f.readlines()
|
||||
|
||||
for l in d:
|
||||
if "Total scheduling delay (seconds): " in l:
|
||||
scheduling_delays.append(float(l.replace("Total scheduling delay (seconds): ", '')))
|
||||
scheduling_delays.append(float(l.replace(
|
||||
"Total scheduling delay (seconds): ", '')))
|
||||
|
||||
with open(os.path.join(base_results_dir, 'results.txt'), 'w') as f:
|
||||
with open(os.path.join(base_dir, 'results.txt'), 'w') as f:
|
||||
f.write(f"Average schedule time: {round(mean(scheduling_delays), 3)}\n")
|
||||
f.write(f"Scheduling times: {scheduling_delays}")
|
||||
|
||||
def run_test(patterns, recipes, files_count, expected_job_count, repeats, job_counter, requested_jobs, runtime_start, signature='', execution=False, print_logging=False):
|
||||
def run_test(patterns:Dict[str,BasePattern], recipes:Dict[str,BaseRecipe],
|
||||
files_count:int, expected_job_count:int, repeats:int, job_counter:int,
|
||||
requested_jobs:int, runtime_start:float, signature:str="",
|
||||
execution:bool=False, print_logging:bool=False):
|
||||
if not os.path.exists(RESULTS_DIR):
|
||||
os.mkdir(RESULTS_DIR)
|
||||
|
||||
@ -172,24 +184,12 @@ def run_test(patterns, recipes, files_count, expected_job_count, repeats, job_co
|
||||
print=runner_debug_stream,
|
||||
logging=3
|
||||
)
|
||||
|
||||
# meow.WorkflowRunner(
|
||||
# VGRID,
|
||||
# num_workers,
|
||||
# patterns=patterns,
|
||||
# recipes=recipes,
|
||||
# daemon=True,
|
||||
# start_workers=False,
|
||||
# retro_active_jobs=False,
|
||||
# print_logging=print_logging,
|
||||
# file_logging=False,
|
||||
# wait_time=1
|
||||
# )
|
||||
|
||||
runner.start()
|
||||
|
||||
# Generate triggering files
|
||||
first_filename, generation_duration = generate(files_count, file_base +"/file_")
|
||||
first_filename, generation_duration = \
|
||||
generate(files_count, file_base +"/file_")
|
||||
|
||||
idle_loops = 0
|
||||
total_loops = 0
|
||||
@ -216,10 +216,27 @@ def run_test(patterns, recipes, files_count, expected_job_count, repeats, job_co
|
||||
else:
|
||||
jobs = os.listdir(DEFAULT_JOB_QUEUE_DIR)
|
||||
|
||||
results_path = os.path.join(RESULTS_DIR, signature, str(expected_job_count), str(run), 'results.txt')
|
||||
results_path = os.path.join(
|
||||
RESULTS_DIR,
|
||||
signature,
|
||||
str(expected_job_count),
|
||||
str(run),
|
||||
"results.txt"
|
||||
)
|
||||
|
||||
cleanup(jobs, results_path, first_filename, generation_duration, execution=execution)
|
||||
cleanup(
|
||||
jobs,
|
||||
results_path,
|
||||
first_filename,
|
||||
generation_duration,
|
||||
execution=execution
|
||||
)
|
||||
|
||||
print(f"Completed scheduling run {str(run + 1)} of {str(len(jobs))}/{str(expected_job_count)} jobs for '{signature}' {job_counter + expected_job_count*(run+1)}/{requested_jobs} ({str(round(time.time()-runtime_start, 3))}s)")
|
||||
print(f"Completed scheduling run {str(run + 1)} of {str(len(jobs))}"
|
||||
f"/{str(expected_job_count)} jobs for '{signature}' "
|
||||
f"{job_counter + expected_job_count*(run+1)}/{requested_jobs} "
|
||||
f"({str(round(time.time()-runtime_start, 3))}s)")
|
||||
|
||||
collate_results(os.path.join(RESULTS_DIR, signature, str(expected_job_count)))
|
||||
collate_results(
|
||||
os.path.join(RESULTS_DIR, signature, str(expected_job_count))
|
||||
)
|
||||
|
@ -4,7 +4,8 @@ from meow_base.recipes import get_recipe_from_notebook
|
||||
|
||||
from shared import run_test, SRME
|
||||
|
||||
def single_rule_multiple_events(job_count:int, REPEATS, job_counter, requested_jobs, runtime_start):
|
||||
def single_rule_multiple_events(job_count:int, REPEATS:int, job_counter:int,
|
||||
requested_jobs:int, runtime_start:float):
|
||||
patterns = {}
|
||||
pattern = FileEventPattern(
|
||||
f"pattern_one",
|
||||
|
@ -5,7 +5,8 @@ from meow_base.recipes import get_recipe_from_notebook
|
||||
from meow_base.functionality.meow import create_parameter_sweep
|
||||
from shared import run_test, SRSEP
|
||||
|
||||
def single_rule_single_event_parallel(job_count:int, REPEATS, job_counter, requested_jobs, runtime_start):
|
||||
def single_rule_single_event_parallel(job_count:int, REPEATS:int,
|
||||
job_counter:int, requested_jobs:int, runtime_start:float):
|
||||
patterns = {}
|
||||
pattern = FileEventPattern(
|
||||
f"pattern_one",
|
||||
|
@ -4,7 +4,8 @@ from meow_base.recipes import get_recipe_from_notebook
|
||||
|
||||
from shared import run_test, SRSES
|
||||
|
||||
def single_rule_single_event_sequential(job_count:int, REPEATS, job_counter, requested_jobs, runtime_start):
|
||||
def single_rule_single_event_sequential(job_count:int, REPEATS:int,
|
||||
job_counter:int, requested_jobs:int, runtime_start:float):
|
||||
patterns = {}
|
||||
pattern = FileEventPattern(
|
||||
f"pattern_one",
|
||||
|
Reference in New Issue
Block a user