cleared up test_runner
This commit is contained in:
@ -1,8 +1,11 @@
|
||||
|
||||
import io
|
||||
import importlib
|
||||
import os
|
||||
import unittest
|
||||
|
||||
from random import shuffle
|
||||
from shutil import copy
|
||||
from time import sleep
|
||||
|
||||
from core.base_conductor import BaseConductor
|
||||
@ -12,17 +15,107 @@ from conductors import LocalPythonConductor
|
||||
from core.correctness.vars import get_result_file, \
|
||||
JOB_TYPE_PAPERMILL, JOB_ERROR, META_FILE, JOB_TYPE_PYTHON, JOB_CREATE_TIME
|
||||
from core.runner import MeowRunner
|
||||
from functionality.file_io import make_dir, read_file, read_notebook, read_yaml
|
||||
from functionality.file_io import make_dir, read_file, read_notebook, \
|
||||
read_yaml, write_file, lines_to_string
|
||||
from functionality.meow import create_parameter_sweep
|
||||
from functionality.requirements import create_python_requirements
|
||||
from patterns.file_event_pattern import WatchdogMonitor, FileEventPattern
|
||||
from recipes.jupyter_notebook_recipe import PapermillHandler, \
|
||||
JupyterNotebookRecipe
|
||||
from recipes.python_recipe import PythonHandler, PythonRecipe
|
||||
from shared import setup, teardown, \
|
||||
TEST_JOB_QUEUE, TEST_JOB_OUTPUT, TEST_MONITOR_BASE, \
|
||||
APPENDING_NOTEBOOK, COMPLETE_PYTHON_SCRIPT, TEST_DIR
|
||||
from shared import setup, teardown, backup_before_teardown, \
|
||||
TEST_JOB_QUEUE, TEST_JOB_OUTPUT, TEST_MONITOR_BASE, MAKER_RECIPE, \
|
||||
APPENDING_NOTEBOOK, COMPLETE_PYTHON_SCRIPT, TEST_DIR, FILTER_RECIPE, \
|
||||
POROSITY_CHECK_NOTEBOOK, SEGMENT_FOAM_NOTEBOOK, GENERATOR_NOTEBOOK, \
|
||||
FOAM_PORE_ANALYSIS_NOTEBOOK, IDMC_UTILS_MODULE, TEST_DATA, GENERATE_SCRIPT
|
||||
|
||||
|
||||
pattern_check = FileEventPattern(
|
||||
"pattern_check",
|
||||
os.path.join("foam_ct_data", "*"),
|
||||
"recipe_check",
|
||||
"input_filename",
|
||||
parameters={
|
||||
"output_filedir_accepted":
|
||||
os.path.join("{BASE}", "foam_ct_data_accepted"),
|
||||
"output_filedir_discarded":
|
||||
os.path.join("{BASE}", "foam_ct_data_discarded"),
|
||||
"porosity_lower_threshold": 0.8,
|
||||
"utils_path": os.path.join("{BASE}", "idmc_utils_module.py")
|
||||
})
|
||||
|
||||
pattern_segment = FileEventPattern(
|
||||
"pattern_segment",
|
||||
os.path.join("foam_ct_data_accepted", "*"),
|
||||
"recipe_segment",
|
||||
"input_filename",
|
||||
parameters={
|
||||
"output_filedir": os.path.join("{BASE}", "foam_ct_data_segmented"),
|
||||
"input_filedir": os.path.join("{BASE}", "foam_ct_data"),
|
||||
"utils_path": os.path.join("{BASE}", "idmc_utils_module.py")
|
||||
})
|
||||
|
||||
pattern_analysis = FileEventPattern(
|
||||
"pattern_analysis",
|
||||
os.path.join("foam_ct_data_segmented", "*"),
|
||||
"recipe_analysis",
|
||||
"input_filename",
|
||||
parameters={
|
||||
"output_filedir": os.path.join("{BASE}", "foam_ct_data_pore_analysis"),
|
||||
"utils_path": os.path.join("{BASE}", "idmc_utils_module.py")
|
||||
})
|
||||
|
||||
pattern_regenerate = FileEventPattern(
|
||||
"pattern_regenerate",
|
||||
os.path.join("foam_ct_data_discarded", "*"),
|
||||
"recipe_generator",
|
||||
"discarded",
|
||||
parameters={
|
||||
"dest_dir": os.path.join("{BASE}", "foam_ct_data"),
|
||||
"utils_path": os.path.join("{BASE}", "idmc_utils_module.py"),
|
||||
"gen_path": os.path.join("{BASE}", "generator.py"),
|
||||
"test_data": os.path.join(TEST_DATA, "foam_ct_data"),
|
||||
"vx": 64,
|
||||
"vy": 64,
|
||||
"vz": 64,
|
||||
"res": 3/64,
|
||||
"chance_good": 1,
|
||||
"chance_small": 0,
|
||||
"chance_big": 0
|
||||
})
|
||||
|
||||
recipe_check_key, recipe_check_req = create_python_requirements(
|
||||
modules=["numpy", "importlib", "matplotlib"])
|
||||
recipe_check = JupyterNotebookRecipe(
|
||||
'recipe_check',
|
||||
POROSITY_CHECK_NOTEBOOK,
|
||||
requirements={recipe_check_key: recipe_check_req}
|
||||
)
|
||||
|
||||
recipe_segment_key, recipe_segment_req = create_python_requirements(
|
||||
modules=["numpy", "importlib", "matplotlib", "scipy", "skimage"])
|
||||
recipe_segment = JupyterNotebookRecipe(
|
||||
'recipe_segment',
|
||||
SEGMENT_FOAM_NOTEBOOK,
|
||||
requirements={recipe_segment_key: recipe_segment_req}
|
||||
)
|
||||
|
||||
recipe_analysis_key, recipe_analysis_req = create_python_requirements(
|
||||
modules=["numpy", "importlib", "matplotlib", "scipy", "skimage"])
|
||||
recipe_analysis = JupyterNotebookRecipe(
|
||||
'recipe_analysis',
|
||||
FOAM_PORE_ANALYSIS_NOTEBOOK,
|
||||
requirements={recipe_analysis_key: recipe_analysis_req}
|
||||
)
|
||||
|
||||
recipe_generator_key, recipe_generator_req = create_python_requirements(
|
||||
modules=["numpy", "matplotlib", "random"])
|
||||
recipe_generator = JupyterNotebookRecipe(
|
||||
'recipe_generator',
|
||||
GENERATOR_NOTEBOOK,
|
||||
requirements={recipe_generator_key: recipe_generator_req}
|
||||
)
|
||||
|
||||
class MeowTests(unittest.TestCase):
|
||||
def setUp(self)->None:
|
||||
super().setUp()
|
||||
@ -171,7 +264,7 @@ class MeowTests(unittest.TestCase):
|
||||
"infile",
|
||||
parameters={
|
||||
"extra":"A line from a test Pattern",
|
||||
"outfile":os.path.join("{VGRID}", "output", "{FILENAME}")
|
||||
"outfile":os.path.join("{BASE}", "output", "{FILENAME}")
|
||||
})
|
||||
recipe = JupyterNotebookRecipe(
|
||||
"recipe_one", APPENDING_NOTEBOOK)
|
||||
@ -257,13 +350,13 @@ class MeowTests(unittest.TestCase):
|
||||
"infile",
|
||||
parameters={
|
||||
"extra":"A line from Pattern 1",
|
||||
"outfile":os.path.join("{VGRID}", "middle", "{FILENAME}")
|
||||
"outfile":os.path.join("{BASE}", "middle", "{FILENAME}")
|
||||
})
|
||||
pattern_two = FileEventPattern(
|
||||
"pattern_two", os.path.join("middle", "A.txt"), "recipe_one", "infile",
|
||||
parameters={
|
||||
"extra":"A line from Pattern 2",
|
||||
"outfile":os.path.join("{VGRID}", "output", "{FILENAME}")
|
||||
"outfile":os.path.join("{BASE}", "output", "{FILENAME}")
|
||||
})
|
||||
recipe = JupyterNotebookRecipe(
|
||||
"recipe_one", APPENDING_NOTEBOOK)
|
||||
@ -367,7 +460,7 @@ class MeowTests(unittest.TestCase):
|
||||
"pattern_one", os.path.join("start", "A.txt"), "recipe_one", "infile",
|
||||
parameters={
|
||||
"num":10000,
|
||||
"outfile":os.path.join("{VGRID}", "output", "{FILENAME}")
|
||||
"outfile":os.path.join("{BASE}", "output", "{FILENAME}")
|
||||
})
|
||||
recipe = PythonRecipe(
|
||||
"recipe_one", COMPLETE_PYTHON_SCRIPT
|
||||
@ -459,7 +552,7 @@ class MeowTests(unittest.TestCase):
|
||||
"infile",
|
||||
parameters={
|
||||
"num":250,
|
||||
"outfile":os.path.join("{VGRID}", "middle", "{FILENAME}")
|
||||
"outfile":os.path.join("{BASE}", "middle", "{FILENAME}")
|
||||
})
|
||||
pattern_two = FileEventPattern(
|
||||
"pattern_two",
|
||||
@ -468,7 +561,7 @@ class MeowTests(unittest.TestCase):
|
||||
"infile",
|
||||
parameters={
|
||||
"num":40,
|
||||
"outfile":os.path.join("{VGRID}", "output", "{FILENAME}")
|
||||
"outfile":os.path.join("{BASE}", "output", "{FILENAME}")
|
||||
})
|
||||
recipe = PythonRecipe(
|
||||
"recipe_one", COMPLETE_PYTHON_SCRIPT
|
||||
@ -595,7 +688,7 @@ class MeowTests(unittest.TestCase):
|
||||
"infile",
|
||||
sweep=create_parameter_sweep("num", 1000, 10000, 200),
|
||||
parameters={
|
||||
"outfile":os.path.join("{VGRID}", "output", "{FILENAME}")
|
||||
"outfile":os.path.join("{BASE}", "output", "{FILENAME}")
|
||||
})
|
||||
recipe = PythonRecipe(
|
||||
"recipe_one", COMPLETE_PYTHON_SCRIPT
|
||||
@ -678,7 +771,608 @@ class MeowTests(unittest.TestCase):
|
||||
output_path = os.path.join(TEST_MONITOR_BASE, "output", "A.txt")
|
||||
self.assertTrue(os.path.exists(output_path))
|
||||
|
||||
# TODO adding tests with numpy or other external dependency
|
||||
def testSelfModifyingAnalysis(self)->None:
|
||||
maker_pattern = FileEventPattern(
|
||||
"maker_pattern",
|
||||
os.path.join("confs", "*.yml"),
|
||||
"maker_recipe",
|
||||
"input_yaml",
|
||||
parameters={
|
||||
"meow_dir": "self-modifying",
|
||||
"filter_recipe": "recipe_filter",
|
||||
"recipe_input_image": "input_image",
|
||||
"recipe_output_image": "output_image",
|
||||
"recipe_args": "args",
|
||||
"recipe_method": "method"
|
||||
})
|
||||
patterns = {
|
||||
"maker_pattern": maker_pattern,
|
||||
}
|
||||
|
||||
filter_recipe = JupyterNotebookRecipe(
|
||||
"filter_recipe", FILTER_RECIPE
|
||||
)
|
||||
maker_recipe = JupyterNotebookRecipe(
|
||||
"maker_recipe", MAKER_RECIPE
|
||||
)
|
||||
|
||||
recipes = {
|
||||
filter_recipe.name: filter_recipe,
|
||||
maker_recipe.name: maker_recipe
|
||||
}
|
||||
|
||||
runner_debug_stream = io.StringIO("")
|
||||
|
||||
runner = MeowRunner(
|
||||
WatchdogMonitor(
|
||||
TEST_MONITOR_BASE,
|
||||
patterns,
|
||||
recipes,
|
||||
settletime=1
|
||||
),
|
||||
PythonHandler(
|
||||
job_queue_dir=TEST_JOB_QUEUE
|
||||
),
|
||||
LocalPythonConductor(),
|
||||
job_queue_dir=TEST_JOB_QUEUE,
|
||||
job_output_dir=TEST_JOB_OUTPUT,
|
||||
print=runner_debug_stream,
|
||||
logging=3
|
||||
)
|
||||
|
||||
# TODO finish me
|
||||
# runner.start()
|
||||
|
||||
# Test some actual scientific analysis, but in a simple progression
|
||||
def testScientificAnalysisAllGood(self)->None:
|
||||
patterns = {
|
||||
'pattern_check': pattern_check,
|
||||
'pattern_segment': pattern_segment,
|
||||
'pattern_analysis': pattern_analysis,
|
||||
'pattern_regenerate': pattern_regenerate
|
||||
}
|
||||
|
||||
recipes = {
|
||||
'recipe_check': recipe_check,
|
||||
'recipe_segment': recipe_segment,
|
||||
'recipe_analysis': recipe_analysis,
|
||||
'recipe_generator': recipe_generator
|
||||
}
|
||||
|
||||
runner_debug_stream = io.StringIO("")
|
||||
|
||||
runner = MeowRunner(
|
||||
WatchdogMonitor(
|
||||
TEST_MONITOR_BASE,
|
||||
patterns,
|
||||
recipes,
|
||||
settletime=1
|
||||
),
|
||||
PapermillHandler(
|
||||
job_queue_dir=TEST_JOB_QUEUE
|
||||
),
|
||||
LocalPythonConductor(),
|
||||
job_queue_dir=TEST_JOB_QUEUE,
|
||||
job_output_dir=TEST_JOB_OUTPUT,
|
||||
print=runner_debug_stream,
|
||||
logging=3
|
||||
)
|
||||
|
||||
good = 3
|
||||
big = 0
|
||||
small = 0
|
||||
vx = 64
|
||||
vy = 64
|
||||
vz = 64
|
||||
res = 3/vz
|
||||
backup_data_dir = os.path.join(TEST_DATA, "foam_ct_data")
|
||||
foam_data_dir = os.path.join(TEST_MONITOR_BASE, "foam_ct_data")
|
||||
make_dir(foam_data_dir)
|
||||
|
||||
write_file(lines_to_string(IDMC_UTILS_MODULE),
|
||||
os.path.join(TEST_MONITOR_BASE, "idmc_utils_module.py"))
|
||||
|
||||
gen_path = os.path.join(TEST_MONITOR_BASE, "generator.py")
|
||||
write_file(lines_to_string(GENERATE_SCRIPT), gen_path)
|
||||
|
||||
u_spec = importlib.util.spec_from_file_location("gen", gen_path)
|
||||
gen = importlib.util.module_from_spec(u_spec)
|
||||
u_spec.loader.exec_module(gen)
|
||||
|
||||
all_data = [1000] * good + [100] * big + [10000] * small
|
||||
shuffle(all_data)
|
||||
|
||||
for i, val in enumerate(all_data):
|
||||
filename = f"foam_dataset_{i}_{val}_{vx}_{vy}_{vz}.npy"
|
||||
backup_file = os.path.join(backup_data_dir, filename)
|
||||
if not os.path.exists(backup_file):
|
||||
gen.create_foam_data_file(backup_file, val, vx, vy, vz, res)
|
||||
|
||||
target_file = os.path.join(foam_data_dir, filename)
|
||||
copy(backup_file, target_file)
|
||||
|
||||
self.assertEqual(len(os.listdir(foam_data_dir)), good + big + small)
|
||||
|
||||
runner.start()
|
||||
|
||||
idle_loops = 0
|
||||
total_loops = 0
|
||||
messages = None
|
||||
while idle_loops < 15 and total_loops < 150:
|
||||
sleep(1)
|
||||
runner_debug_stream.seek(0)
|
||||
new_messages = runner_debug_stream.readlines()
|
||||
|
||||
if messages == new_messages:
|
||||
idle_loops += 1
|
||||
else:
|
||||
idle_loops = 0
|
||||
messages = new_messages
|
||||
total_loops += 1
|
||||
|
||||
for message in messages:
|
||||
print(message.replace('\n', ''))
|
||||
|
||||
runner.stop()
|
||||
|
||||
print(f"total_loops:{total_loops}, idle_loops:{idle_loops}")
|
||||
|
||||
if len(os.listdir(TEST_JOB_OUTPUT)) != good * 3:
|
||||
backup_before_teardown(TEST_JOB_OUTPUT,
|
||||
f"Backup-all_good-{TEST_JOB_OUTPUT}")
|
||||
backup_before_teardown(TEST_JOB_QUEUE,
|
||||
f"Backup-all_good-{TEST_JOB_QUEUE}")
|
||||
backup_before_teardown(TEST_MONITOR_BASE,
|
||||
f"Backup-all_good-{TEST_MONITOR_BASE}")
|
||||
self.assertEqual(len(os.listdir(TEST_JOB_OUTPUT)), good * 3)
|
||||
for job_dir in os.listdir(TEST_JOB_OUTPUT):
|
||||
metafile = os.path.join(TEST_JOB_OUTPUT, job_dir, META_FILE)
|
||||
status = read_yaml(metafile)
|
||||
|
||||
if JOB_ERROR in status:
|
||||
backup_before_teardown(TEST_JOB_OUTPUT,
|
||||
f"Backup-all_good-{TEST_JOB_OUTPUT}")
|
||||
backup_before_teardown(TEST_JOB_QUEUE,
|
||||
f"Backup-all_good-{TEST_JOB_QUEUE}")
|
||||
backup_before_teardown(TEST_MONITOR_BASE,
|
||||
f"Backup-all_good-{TEST_MONITOR_BASE}")
|
||||
|
||||
self.assertNotIn(JOB_ERROR, status)
|
||||
|
||||
result_path = os.path.join(
|
||||
TEST_JOB_OUTPUT, job_dir, get_result_file(JOB_TYPE_PAPERMILL))
|
||||
self.assertTrue(os.path.exists(result_path))
|
||||
|
||||
# Test some actual scientific analysis, in a predicatable loop
|
||||
def testScientificAnalysisPredictableLoop(self)->None:
|
||||
patterns = {
|
||||
'pattern_check': pattern_check,
|
||||
'pattern_segment': pattern_segment,
|
||||
'pattern_analysis': pattern_analysis,
|
||||
'pattern_regenerate': pattern_regenerate
|
||||
}
|
||||
|
||||
recipes = {
|
||||
'recipe_check': recipe_check,
|
||||
'recipe_segment': recipe_segment,
|
||||
'recipe_analysis': recipe_analysis,
|
||||
'recipe_generator': recipe_generator
|
||||
}
|
||||
|
||||
runner_debug_stream = io.StringIO("")
|
||||
|
||||
runner = MeowRunner(
|
||||
WatchdogMonitor(
|
||||
TEST_MONITOR_BASE,
|
||||
patterns,
|
||||
recipes,
|
||||
settletime=1
|
||||
),
|
||||
PapermillHandler(
|
||||
job_queue_dir=TEST_JOB_QUEUE
|
||||
),
|
||||
LocalPythonConductor(),
|
||||
job_queue_dir=TEST_JOB_QUEUE,
|
||||
job_output_dir=TEST_JOB_OUTPUT,
|
||||
print=runner_debug_stream,
|
||||
logging=3
|
||||
)
|
||||
|
||||
good = 10
|
||||
big = 5
|
||||
small = 0
|
||||
vx = 64
|
||||
vy = 64
|
||||
vz = 64
|
||||
res = 3/vz
|
||||
backup_data_dir = os.path.join(TEST_DATA, "foam_ct_data")
|
||||
make_dir(backup_data_dir)
|
||||
foam_data_dir = os.path.join(TEST_MONITOR_BASE, "foam_ct_data")
|
||||
make_dir(foam_data_dir)
|
||||
|
||||
write_file(lines_to_string(IDMC_UTILS_MODULE),
|
||||
os.path.join(TEST_MONITOR_BASE, "idmc_utils_module.py"))
|
||||
|
||||
gen_path = os.path.join(TEST_MONITOR_BASE, "generator.py")
|
||||
write_file(lines_to_string(GENERATE_SCRIPT), gen_path)
|
||||
|
||||
all_data = [1000] * good + [100] * big + [10000] * small
|
||||
shuffle(all_data)
|
||||
|
||||
u_spec = importlib.util.spec_from_file_location("gen", gen_path)
|
||||
gen = importlib.util.module_from_spec(u_spec)
|
||||
u_spec.loader.exec_module(gen)
|
||||
|
||||
for i, val in enumerate(all_data):
|
||||
filename = f"foam_dataset_{i}_{val}_{vx}_{vy}_{vz}.npy"
|
||||
backup_file = os.path.join(backup_data_dir, filename)
|
||||
if not os.path.exists(backup_file):
|
||||
gen.create_foam_data_file(backup_file, val, vx, vy, vz, res)
|
||||
|
||||
target_file = os.path.join(foam_data_dir, filename)
|
||||
copy(backup_file, target_file)
|
||||
|
||||
self.assertEqual(len(os.listdir(foam_data_dir)), good + big + small)
|
||||
|
||||
runner.start()
|
||||
|
||||
idle_loops = 0
|
||||
total_loops = 0
|
||||
messages = None
|
||||
while idle_loops < 45 and total_loops < 600:
|
||||
sleep(1)
|
||||
runner_debug_stream.seek(0)
|
||||
new_messages = runner_debug_stream.readlines()
|
||||
|
||||
if messages == new_messages:
|
||||
idle_loops += 1
|
||||
else:
|
||||
idle_loops = 0
|
||||
messages = new_messages
|
||||
total_loops += 1
|
||||
|
||||
for message in messages:
|
||||
print(message.replace('\n', ''))
|
||||
|
||||
runner.stop()
|
||||
print(f"total_loops:{total_loops}, idle_loops:{idle_loops}")
|
||||
|
||||
jobs = len(os.listdir(TEST_JOB_OUTPUT))
|
||||
if jobs != (good*3 + big*5 + small*5):
|
||||
backup_before_teardown(TEST_JOB_OUTPUT,
|
||||
f"Backup-predictable-{TEST_JOB_OUTPUT}")
|
||||
backup_before_teardown(TEST_JOB_QUEUE,
|
||||
f"Backup-predictable-{TEST_JOB_QUEUE}")
|
||||
backup_before_teardown(TEST_MONITOR_BASE,
|
||||
f"Backup-predictable-{TEST_MONITOR_BASE}")
|
||||
|
||||
self.assertEqual(jobs, good*3 + big*5 + small*5)
|
||||
for job_dir in os.listdir(TEST_JOB_OUTPUT):
|
||||
metafile = os.path.join(TEST_JOB_OUTPUT, job_dir, META_FILE)
|
||||
status = read_yaml(metafile)
|
||||
|
||||
if JOB_ERROR in status:
|
||||
print(status[JOB_ERROR])
|
||||
backup_before_teardown(TEST_JOB_OUTPUT,
|
||||
f"Backup-predictable-{TEST_JOB_OUTPUT}")
|
||||
backup_before_teardown(TEST_JOB_QUEUE,
|
||||
f"Backup-predictable-{TEST_JOB_QUEUE}")
|
||||
backup_before_teardown(TEST_MONITOR_BASE,
|
||||
f"Backup-predictable-{TEST_MONITOR_BASE}")
|
||||
|
||||
self.assertNotIn(JOB_ERROR, status)
|
||||
|
||||
result_path = os.path.join(
|
||||
TEST_JOB_OUTPUT, job_dir, get_result_file(JOB_TYPE_PAPERMILL))
|
||||
self.assertTrue(os.path.exists(result_path))
|
||||
|
||||
results = len(os.listdir(
|
||||
os.path.join(TEST_MONITOR_BASE, "foam_ct_data_pore_analysis")))
|
||||
if results != good+big+small:
|
||||
backup_before_teardown(TEST_JOB_OUTPUT,
|
||||
f"Backup-predictable-{TEST_JOB_OUTPUT}")
|
||||
backup_before_teardown(TEST_JOB_QUEUE,
|
||||
f"Backup-predictable-{TEST_JOB_QUEUE}")
|
||||
backup_before_teardown(TEST_MONITOR_BASE,
|
||||
f"Backup-predictable-{TEST_MONITOR_BASE}")
|
||||
|
||||
self.assertEqual(results, good+big+small)
|
||||
|
||||
# Test some actual scientific analysis, in an unpredicatable loop
|
||||
def testScientificAnalysisRandomLoop(self)->None:
|
||||
pattern_regenerate_random = FileEventPattern(
|
||||
"pattern_regenerate_random",
|
||||
os.path.join("foam_ct_data_discarded", "*"),
|
||||
"recipe_generator",
|
||||
"discarded",
|
||||
parameters={
|
||||
"dest_dir": os.path.join("{BASE}", "foam_ct_data"),
|
||||
"utils_path": os.path.join("{BASE}", "idmc_utils_module.py"),
|
||||
"gen_path": os.path.join("{BASE}", "generator.py"),
|
||||
"test_data": os.path.join(TEST_DATA, "foam_ct_data"),
|
||||
"vx": 64,
|
||||
"vy": 64,
|
||||
"vz": 64,
|
||||
"res": 3/64,
|
||||
"chance_good": 1,
|
||||
"chance_small": 0,
|
||||
"chance_big": 1
|
||||
})
|
||||
|
||||
patterns = {
|
||||
'pattern_check': pattern_check,
|
||||
'pattern_segment': pattern_segment,
|
||||
'pattern_analysis': pattern_analysis,
|
||||
'pattern_regenerate_random': pattern_regenerate_random
|
||||
}
|
||||
|
||||
recipes = {
|
||||
'recipe_check': recipe_check,
|
||||
'recipe_segment': recipe_segment,
|
||||
'recipe_analysis': recipe_analysis,
|
||||
'recipe_generator': recipe_generator
|
||||
}
|
||||
|
||||
runner_debug_stream = io.StringIO("")
|
||||
|
||||
runner = MeowRunner(
|
||||
WatchdogMonitor(
|
||||
TEST_MONITOR_BASE,
|
||||
patterns,
|
||||
recipes,
|
||||
settletime=1
|
||||
),
|
||||
PapermillHandler(
|
||||
job_queue_dir=TEST_JOB_QUEUE
|
||||
),
|
||||
LocalPythonConductor(),
|
||||
job_queue_dir=TEST_JOB_QUEUE,
|
||||
job_output_dir=TEST_JOB_OUTPUT,
|
||||
print=runner_debug_stream,
|
||||
logging=3
|
||||
)
|
||||
|
||||
good = 10
|
||||
big = 5
|
||||
small = 0
|
||||
vx = 64
|
||||
vy = 64
|
||||
vz = 64
|
||||
res = 3/vz
|
||||
backup_data_dir = os.path.join(TEST_DATA, "foam_ct_data")
|
||||
make_dir(backup_data_dir)
|
||||
foam_data_dir = os.path.join(TEST_MONITOR_BASE, "foam_ct_data")
|
||||
make_dir(foam_data_dir)
|
||||
|
||||
write_file(lines_to_string(IDMC_UTILS_MODULE),
|
||||
os.path.join(TEST_MONITOR_BASE, "idmc_utils_module.py"))
|
||||
|
||||
gen_path = os.path.join(TEST_MONITOR_BASE, "generator.py")
|
||||
write_file(lines_to_string(GENERATE_SCRIPT), gen_path)
|
||||
|
||||
all_data = [1000] * good + [100] * big + [10000] * small
|
||||
shuffle(all_data)
|
||||
|
||||
u_spec = importlib.util.spec_from_file_location("gen", gen_path)
|
||||
gen = importlib.util.module_from_spec(u_spec)
|
||||
u_spec.loader.exec_module(gen)
|
||||
|
||||
for i, val in enumerate(all_data):
|
||||
filename = f"foam_dataset_{i}_{val}_{vx}_{vy}_{vz}.npy"
|
||||
backup_file = os.path.join(backup_data_dir, filename)
|
||||
if not os.path.exists(backup_file):
|
||||
gen.create_foam_data_file(backup_file, val, vx, vy, vz, res)
|
||||
|
||||
target_file = os.path.join(foam_data_dir, filename)
|
||||
copy(backup_file, target_file)
|
||||
|
||||
self.assertEqual(len(os.listdir(foam_data_dir)), good + big + small)
|
||||
|
||||
runner.start()
|
||||
|
||||
idle_loops = 0
|
||||
total_loops = 0
|
||||
messages = None
|
||||
while idle_loops < 60 and total_loops < 600:
|
||||
sleep(1)
|
||||
runner_debug_stream.seek(0)
|
||||
new_messages = runner_debug_stream.readlines()
|
||||
|
||||
if messages == new_messages:
|
||||
idle_loops += 1
|
||||
else:
|
||||
idle_loops = 0
|
||||
messages = new_messages
|
||||
total_loops += 1
|
||||
|
||||
for message in messages:
|
||||
print(message.replace('\n', ''))
|
||||
|
||||
runner.stop()
|
||||
print(f"total_loops:{total_loops}, idle_loops:{idle_loops}")
|
||||
|
||||
for job_dir in os.listdir(TEST_JOB_OUTPUT):
|
||||
metafile = os.path.join(TEST_JOB_OUTPUT, job_dir, META_FILE)
|
||||
status = read_yaml(metafile)
|
||||
|
||||
if JOB_ERROR in status:
|
||||
print(status[JOB_ERROR])
|
||||
backup_before_teardown(TEST_JOB_OUTPUT,
|
||||
f"Backup-random-{TEST_JOB_OUTPUT}")
|
||||
backup_before_teardown(TEST_JOB_QUEUE,
|
||||
f"Backup-random-{TEST_JOB_QUEUE}")
|
||||
backup_before_teardown(TEST_MONITOR_BASE,
|
||||
f"Backup-random-{TEST_MONITOR_BASE}")
|
||||
|
||||
self.assertNotIn(JOB_ERROR, status)
|
||||
|
||||
result_path = os.path.join(
|
||||
TEST_JOB_OUTPUT, job_dir, get_result_file(JOB_TYPE_PAPERMILL))
|
||||
self.assertTrue(os.path.exists(result_path))
|
||||
|
||||
outputs = len(os.listdir(TEST_JOB_OUTPUT))
|
||||
if outputs < good*3 + big*5 + small*5:
|
||||
backup_before_teardown(TEST_JOB_OUTPUT,
|
||||
f"Backup-random-{TEST_JOB_OUTPUT}")
|
||||
backup_before_teardown(TEST_JOB_QUEUE,
|
||||
f"Backup-random-{TEST_JOB_QUEUE}")
|
||||
backup_before_teardown(TEST_MONITOR_BASE,
|
||||
f"Backup-random-{TEST_MONITOR_BASE}")
|
||||
|
||||
self.assertTrue(outputs >= good*3 + big*5 + small*5)
|
||||
|
||||
results = len(os.listdir(
|
||||
os.path.join(TEST_MONITOR_BASE, "foam_ct_data_pore_analysis")))
|
||||
|
||||
self.assertEqual(results, good+big+small)
|
||||
|
||||
# Test some actual scientific analysis, in an unpredicatable loop
|
||||
def testScientificAnalysisMassiveRandomLoop(self)->None:
|
||||
pattern_regenerate_random = FileEventPattern(
|
||||
"pattern_regenerate_random",
|
||||
os.path.join("foam_ct_data_discarded", "*"),
|
||||
"recipe_generator",
|
||||
"discarded",
|
||||
parameters={
|
||||
"dest_dir": os.path.join("{BASE}", "foam_ct_data"),
|
||||
"utils_path": os.path.join("{BASE}", "idmc_utils_module.py"),
|
||||
"gen_path": os.path.join("{BASE}", "generator.py"),
|
||||
"test_data": os.path.join(TEST_DATA, "foam_ct_data"),
|
||||
"vx": 32,
|
||||
"vy": 32,
|
||||
"vz": 32,
|
||||
"res": 3/32,
|
||||
"chance_good": 1,
|
||||
"chance_small": 0,
|
||||
"chance_big": 3
|
||||
})
|
||||
|
||||
patterns = {
|
||||
'pattern_check': pattern_check,
|
||||
'pattern_segment': pattern_segment,
|
||||
'pattern_analysis': pattern_analysis,
|
||||
'pattern_regenerate_random': pattern_regenerate_random
|
||||
}
|
||||
|
||||
recipes = {
|
||||
'recipe_check': recipe_check,
|
||||
'recipe_segment': recipe_segment,
|
||||
'recipe_analysis': recipe_analysis,
|
||||
'recipe_generator': recipe_generator
|
||||
}
|
||||
|
||||
runner_debug_stream = io.StringIO("")
|
||||
|
||||
runner = MeowRunner(
|
||||
WatchdogMonitor(
|
||||
TEST_MONITOR_BASE,
|
||||
patterns,
|
||||
recipes,
|
||||
settletime=1
|
||||
),
|
||||
PapermillHandler(
|
||||
job_queue_dir=TEST_JOB_QUEUE
|
||||
),
|
||||
LocalPythonConductor(),
|
||||
job_queue_dir=TEST_JOB_QUEUE,
|
||||
job_output_dir=TEST_JOB_OUTPUT,
|
||||
print=runner_debug_stream,
|
||||
logging=3
|
||||
)
|
||||
|
||||
good = 5
|
||||
big = 15
|
||||
small = 0
|
||||
vx = 32
|
||||
vy = 32
|
||||
vz = 32
|
||||
res = 3/vz
|
||||
backup_data_dir = os.path.join(TEST_DATA, "foam_ct_data")
|
||||
make_dir(backup_data_dir)
|
||||
foam_data_dir = os.path.join(TEST_MONITOR_BASE, "foam_ct_data")
|
||||
make_dir(foam_data_dir)
|
||||
|
||||
write_file(lines_to_string(IDMC_UTILS_MODULE),
|
||||
os.path.join(TEST_MONITOR_BASE, "idmc_utils_module.py"))
|
||||
|
||||
gen_path = os.path.join(TEST_MONITOR_BASE, "generator.py")
|
||||
write_file(lines_to_string(GENERATE_SCRIPT), gen_path)
|
||||
|
||||
all_data = [1000] * good + [100] * big + [10000] * small
|
||||
shuffle(all_data)
|
||||
|
||||
u_spec = importlib.util.spec_from_file_location("gen", gen_path)
|
||||
gen = importlib.util.module_from_spec(u_spec)
|
||||
u_spec.loader.exec_module(gen)
|
||||
|
||||
for i, val in enumerate(all_data):
|
||||
filename = f"foam_dataset_{i}_{val}_{vx}_{vy}_{vz}.npy"
|
||||
backup_file = os.path.join(backup_data_dir, filename)
|
||||
if not os.path.exists(backup_file):
|
||||
gen.create_foam_data_file(backup_file, val, vx, vy, vz, res)
|
||||
|
||||
target_file = os.path.join(foam_data_dir, filename)
|
||||
copy(backup_file, target_file)
|
||||
|
||||
self.assertEqual(len(os.listdir(foam_data_dir)), good + big + small)
|
||||
|
||||
runner.start()
|
||||
|
||||
idle_loops = 0
|
||||
total_loops = 0
|
||||
messages = None
|
||||
while idle_loops < 60 and total_loops < 1200:
|
||||
sleep(1)
|
||||
runner_debug_stream.seek(0)
|
||||
new_messages = runner_debug_stream.readlines()
|
||||
|
||||
if messages == new_messages:
|
||||
idle_loops += 1
|
||||
else:
|
||||
idle_loops = 0
|
||||
messages = new_messages
|
||||
total_loops += 1
|
||||
|
||||
for message in messages:
|
||||
print(message.replace('\n', ''))
|
||||
|
||||
runner.stop()
|
||||
print(f"total_loops:{total_loops}, idle_loops:{idle_loops}")
|
||||
|
||||
for job_dir in os.listdir(TEST_JOB_OUTPUT):
|
||||
metafile = os.path.join(TEST_JOB_OUTPUT, job_dir, META_FILE)
|
||||
status = read_yaml(metafile)
|
||||
|
||||
if JOB_ERROR in status:
|
||||
print(status[JOB_ERROR])
|
||||
backup_before_teardown(TEST_JOB_OUTPUT,
|
||||
f"Backup-massive-random-{TEST_JOB_OUTPUT}")
|
||||
backup_before_teardown(TEST_JOB_QUEUE,
|
||||
f"Backup-massive-random-{TEST_JOB_QUEUE}")
|
||||
backup_before_teardown(TEST_MONITOR_BASE,
|
||||
f"Backup-massive-random-{TEST_MONITOR_BASE}")
|
||||
|
||||
self.assertNotIn(JOB_ERROR, status)
|
||||
|
||||
result_path = os.path.join(
|
||||
TEST_JOB_OUTPUT, job_dir, get_result_file(JOB_TYPE_PAPERMILL))
|
||||
self.assertTrue(os.path.exists(result_path))
|
||||
|
||||
outputs = len(os.listdir(TEST_JOB_OUTPUT))
|
||||
if outputs < good*3 + big*5 + small*5:
|
||||
backup_before_teardown(TEST_JOB_OUTPUT,
|
||||
f"Backup-massive-random-{TEST_JOB_OUTPUT}")
|
||||
backup_before_teardown(TEST_JOB_QUEUE,
|
||||
f"Backup-massive-random-{TEST_JOB_QUEUE}")
|
||||
backup_before_teardown(TEST_MONITOR_BASE,
|
||||
f"Backup-massive-random-{TEST_MONITOR_BASE}")
|
||||
self.assertTrue(outputs >= good*3 + big*5 + small*5)
|
||||
|
||||
results = len(os.listdir(
|
||||
os.path.join(TEST_MONITOR_BASE, "foam_ct_data_pore_analysis")))
|
||||
|
||||
self.assertEqual(results, good+big+small)
|
||||
|
||||
# TODO test getting job cannot handle
|
||||
# TODO test getting event cannot handle
|
||||
# TODO test with several matched monitors
|
||||
|
Reference in New Issue
Block a user