1 Abstract

This paper...

[Explain briefly the paper and what it does.]

2 Introduction

Scientific Workflow Management Systems
(SWMSs) are an essential tool for automat-
ing, managing, and executing complex scientific
processes involving large volumes of data and
computational tasks'. Traditional SWMSs employ
a linear sequential approach, in which tasks are
performed in a pre-defined order, as defined by
the workflow. While this linear method is suitable
for certain applications, it might not always be
the best choice: processing sequentially can prove
inefficient in cases where some processes can be
done in parallel, or where the next step should
adapt to the previous one. For these use-cases a
dynamic scheduler is required, of which Managing
Event Oriented Workflows[1] (MEOW) is one.

MEOW employs an event-based scheduler, in
which jobs are performed non-linearly, triggered
based on events?. By dynamically adapting the ex-
ecution order based on the outcomes of previous
tasks or external factors, MEOW provides a more
efficient and flexible solution for processing large
volumes of experimental data3.

What else should be included in the intro-
duction?

2.1 Problem

In its current implementation, MEOW is able to
trigger jobs based on changes to monitored files.
This covers a wide range of scenarios, specifically
where the data processing workflow involves the
creation, modification, or removal of files. By mon-
itoring file events, MEOW'’s event-based scheduler
can dynamically execute tasks as soon as the re-
quired conditions are met, ensuring efficient and
timely processing of the data.

While file events work well as a trigger on their
own, there are several scenarios where a different
trigger would be preferred or even required, espe-
cially when dealing with distributed systems or re-
mote operations. To address these shortcomings

Lcitation?
2citation?
3citation?

and further enhance MEOW’s capabilities, the in-
tegration of network event triggers would provide
significant benefits in several key use-cases.

Firstly, network event triggers would allow for
manual triggering of jobs without the need for di-
rect access to the monitored files. This is particu-
larly useful in scenarios where human intervention
or decision-making is required before proceeding
with the subsequent steps in a workflow. While it is
possible to manually trigger job using file events by
making changes to the monitored directories, this
might lead to an already running job accessing the
files at the same time, which could cause problems
with data integrity.

Secondly, incorporating network event triggers
would facilitate seamless communication between
parallel jobs, ensuring that tasks can efficiently ex-
change information and synchronize their progress.

Finally, extending MEOW’s event-based sched-
uler to support network event triggers would enable
the simple and efficient exchange of data between
workflows running on different machines. This fea-
ture is particularly valuable in distributed comput-
ing environments, where data processing tasks are
often split across multiple systems to maximize re-
source utilization and minimize latency. By lever-
aging network event triggers, MEOW would be
better equipped to manage complex workflows in
these environments, ensuring seamless integration
and streamlined data processing

2.2 Background
2.2.1 The structure of MEOW

The MEOW event-based scheduler has three main
parts: monitors, handlers, and the conductor.

Monitors monitor for triggering events. They
are initialized with a number of patterns, which
describe the triggering event. When a pattern’s
triggering event occurs, the monitor signals to the
conductor that the pattern has been triggered.

Handlers perform actions and jobs on behalf of
the scheduler. They are initialized with a number
of recipes, which describe the action to be taken.
The handler starts a job when signal to do so by
the conductor.

The conductor handles the jobs queue. It is ini-
tialized with a number of rules, which a pattern
paired with a recipe. When a monitor sends it a
triggered pattern, the rules are checked for that pat-
tern. If one or more rules contain that pattern, the
corresponding recipes are triggered in their handler.

2.2.2 The meow_base codebase

Specific (but not too granular) implementa-
tion details of meow_base.

3 Method

Explain the code I wrote and why I made
those choices.

e The socket library

e Expanding on existing code, reusing
boiler-plate code

e Test-driven development
o Experiments with triggering on packet

— Removes the ability to send arbi-
trary data

4 Results

Does it work? How well?

4.1 Discussion

With the hindsight of the results, what
could I have done better?

5 Future Work

What should someone do if they want to fix
my mistakes, or expand on them further.

6 Conclusion

Did I succeed in what I wanted to do?

References

[1] David Marchant. “MEOW - Enabling Dy-
namic Scheduling of Scientific Analysis”. PhD
thesis. University of Copenhagen, May 2021.

