
1 Abstract

Explain briefly the paper and what it does.

2 Introduction

Scientific Workflow Management Systems (SWMSs) are an essential tool for automat-
ing, managing, and executing complex scientific processes involving large volumes of
data and computational tasks. Jobs in a SWMS workflows are typically defined as the
nodes in a Directed Acyclic Graph (DAG), where the edges define the dependencies of
each job.

Job 1

Job 2

Job 3

Job 4

Job 5

Job 6

Figure 1: A workflow defined as a DAG. Job 2, 3, and 4 are dependent on the com-
pletion of Job 1, etc.

While this method is suitable for many applications, it may not always be the best
solution. Processing the jobs in a set order can lead to inefficiencies in cases where
the processing of the jobs needs to adapt based on the results of earlier jobs, human
interaction, or changing circumstances. In these contexts, the DAG method might fall
short due to its inherently static nature.

In such scenarios, using a dynamic scheduler can offer a more effective approach.
Unlike traditional DAG-based systems, dynamic schedulers are designed to adapt dy-
namically to changing conditions, providing a more adaptive method for managing
complex workflows. One such dynamic scheduler is the Managing Event Oriented
Workflows[3] (MEOW).

MEOW employs an event-based scheduler, in which jobs are executed indepen-
dently, based on certain triggers. Triggers can in theory be anything, but are cur-
rently limited to file events on local storage. By dynamically adapting the execution
order based on the outcomes of previous tasks or external factors, MEOW provides a
more flexible solution for processing large volumes of experimental data, with minimal
human validation and interaction[2].

1



Trigger 1

Trigger 2

Trigger 3

Trigger 4

Job 1

Job 2

Job 3

Job 4

Figure 2: A workflow using an event-based system. Job 1 is dependent on Trigger 1,
etc.

In this project, I introduce triggers for network events into MEOW. This enables
a running scheduler to react to and act on data transferred over a network connec-
tion. By incorporating this feature, the capability of MEOW is significantly extended,
facilitating the management of not just local file-based workflows, but also complex,
distributed workflows involving communication between multiple systems over a net-
work.

In this report, I will walk through the design and implementation process of this
feature, detailing the challenges encountered and how they were overcome.

2.1 Problem

In its current implementation, MEOW is able to trigger jobs based on changes to
monitored local files. This covers a range of scenarios where the data processing work-
flow involves the creation, modification, or removal of files. By monitoring file events,
MEOW’s event-based scheduler can dynamically execute tasks as soon as the required
conditions are met, ensuring efficient and timely processing of the data. Since the file
monitor is triggered by changes to local files, MEOW is limited to local workflows.

While file events work well as a trigger on their own, there are several scenarios
where a different trigger would be preferred or even required, especially when dealing
with distributed systems or remote operations. To address these shortcomings and
further enhance MEOW’s capabilities, the integration of network event triggers would
provide significant benefits in several key use-cases.

Firstly, network event triggers would enable the initiation of jobs remotely through
the transmission of a triggering message to the monitor, thereby eliminating the ne-
cessity for direct access to the monitored files. This is particularly useful in human-
in-the-loop scenarios, where human intervention or decision-making is required before
proceeding with the subsequent steps in a workflow. While it is possible to manually
trigger job using file events by making changes to the monitored directories, this might
lead to an already running job accessing the files at the same time, which could cause

2



problems with data integrity.
Secondly, incorporating network event triggers would facilitate seamless communi-

cation between parallel workflows, ensuring that tasks can efficiently exchange informa-
tion and updates on their progress, allowing for a better perspective on the combined
workflow, greatly improving visibility and control.

Finally, extending MEOW’s event-based scheduler to support network event trig-
gers would enable the simple and efficient exchange of data between workflows running
on different machines. This feature is particularly valuable in distributed computing
environments, where data processing tasks are often split across multiple systems to
maximize resource utilization and minimize latency.

Integrating network event triggers into MEOW would provide an advantage specif-
ically in the context of heterogeneous workflows, which incorporate a mix of different
tasks running on diverse computing environments. By their nature, these workflows
can involve tasks running on different systems, potentially even in different physical
locations, which need to exchange data or coordinate their progress. In the figure
below, an example heterogeneous workflow is presented.

Figure 3: An example of a heterogeneous workflow

The example workflow requires several checkpoints in which data should be trans-
ferred between the instrument, the instrument storage, centralized storage, High Per-
formance Computing (HPC) resources, and a human interaction point. Network events
can, for the reasons outlined earlier in the section, be used to prevent the workflow
from halting when these points are reached.

2.2 Background

2.2.1 The structure of MEOW

The MEOW event-based scheduler consists of four main components: monitors, han-
dlers, conductors, and the runner.

Monitors listen for triggering events. They are initialized with a number of rules,
which each include a pattern and recipe. Patterns describe the triggering event. For
file events, the patterns describe a path that should trigger the event when changed.
Recipes describe the specific action that should be taken when the rule is triggered.
When a pattern’s triggering event occurs, the monitor sends an event, which contains
the rule and the specifics of the event, to the event queue.

3



Handlers manage the event queue. They unpack and analyze events in the event
queue. If they are valid, they create a directory containing the script defined by the
recipe. The location of the directory is then sent to the runner, to be added to the job
queue.

Conductors manage the jobs queue. They execute the jobs in the locations specified
by the handlers.

Finally, the runner is the main program that orchestrates all these components.
Each instance of the runner incorporates at least one instance of a monitor, handler,
and conductor, and it holds the event and job queues.

Runner
Event Queue Job Queue

Monitor

Listens for
triggering

events

Handler

Validates
events and
creates jobs

Conductor

Executes
jobs

Schedules
events

Pulls
events

Schedules
jobs

Pulls jobs

Figure 4: How the elements of MEOW interact

4



Monitor

Event
Queue

Handler

Job
Queue

Conductor

Storage

Schedules
events on

Events
are inter-
preted by

Schedules
jobs to

Jobs
executed by

Writes
output to

Events are
seen by

Figure 5: The cycle of MEOW’s file events

2.2.2 The meow_base codebase

meow_base[4] is an implementation of MEOW written in python. It is written to be
modular, using base classes for each element in order to ease the implementation of
additional handlers, monitors, etc.

The relevant parts of the implementation are:

• Events are python dictionaries, containing the following items:
– EVENT_PATH: The path of the triggering file.
– EVENT_TYPE: The type of event. File events have the type "watchdog",

since the files are monitored using the watchdog python module.
– EVENT_RULE: The rule that triggered the event, which contains the recipe

that the handler will turn into a job.
– EVENT_TIME: The timestamp of the triggering event.
– Any extra data supplied by the monitor. File events are by default initialized

with the base directory of the event and a hash of the event’s triggering path.
• Event patterns inherit from the BasePattern class. An instance of an event

pattern class describes a specific trigger a monitor should be looking for.
• Monitors inherit from the BaseMonitor class. They listen for set triggers (de-

fined by given event patterns), and create events when those triggers happen.
The file event monitor uses the Watchdog module to monitor given directo-
ries for changes. The Watchdog monitor is initialized with an instance of the
WatchdogEventHandler class to handle the watchdog events. When the Watch-
dog monitor is triggered by a file event, the handle_event method is called on
the event handler, which in turn creates an event based on the specifics of the
triggering event. The event is then sent to the runner to be put in the even
queue.

• The runner is implemented as the class MeowRunner. When initialized with
at least one instance of a monitor, handler, and conductor, it validates them.

5



When started, all the monitors, handlers, and conductors it was initialized with
are started. It also creates pipes for the communication between each element
and the runner.

• Recipes inherit from the BaseRecipe class. They serve primarily as a reposi-
tory for the specific details of a given recipe. This typically includes identifying
the particular script to be executed, but also contain validation checks of these
instructions. The contained data and procedures in a recipe collectively describe
the distinct actions to be taken when a corresponding job is executed.

• Handlers inherit from the BaseHandler class. Handler classes are for a specific
type of job, like the execution of bash scripts. When started, it enters an infinite
loop, where it repeatedly asks the runner for a valid event in the event queue,
and then creates a job for the recipe, and sends it to the runner to put in the
job queue.

• Conductors inherit from the BaseConductor class. Conductor classes are for
a specific type of job, like the execution of bash scripts. When started, it enters
an infinite loop, where it repeatedly asks the runner for a valid job in the job
queue, and then attempts to execute it.

2.2.3 The socket library

The socket library[1], included in the Python Standard Library, serves as an interface
for the Berkeley sockets API. The Berkeley sockets API, originally developed for the
Unix operating system, has become the standard for network communication across
multiple platforms. It allows programs to create ’sockets’, which are endpoints in a
network communication path, for the purpose of sending and receiving data.

Many other libraries and modules focusing on transferring data exist for Python,
some of which may be better in certain MEOW use-cases. The ssl library, for example,
allows for ssl-encrypted communication, which may be a requirement in workflows with
sensitive data. However, implementing network triggers using exclusively the socket
library will provide MEOW with a fundamental implementation of network events,
which can later be expanded or improved with other features (see section 4.2.2).

In my project, all sockets use the Transmission Control Protocol (TCP), which
ensures safe data transfer by enforcing a stable connection between the sender and
receiver.

I make use of the following socket methods, which have the same names and func-
tions in the socket library and the Berkeley sockets API:

• bind(): Associates the socket with a given local IP address and port. It also
reserves the port locally.

• listen(): Puts the socket in a listening state, where it waits for a sender to
request a TCP connection to the socket.

• accept(): Accepts the incoming TCP connection request, creating a connection.
• recv(): Receives data from the given socket.
• close(): Closes a connection to a given socket.

6



During testing of the monitor, the following methods are used to send data to the
running monitor:

• connect(): Sends a TCP connection request to a listening socket.
• sendall(): Sends data to a socket.

3 Method

To address the identified limitations of MEOW and to expand its capabilities, I will
be incorporating network event triggers into the existing event-based scheduler, to
supplement the current file-based event triggers. My method focuses on leveraging
Python’s socket library to enable the processing of network events. The following
subsections detail the specific methodologies employed in expanding the codebase, the
design of the network event trigger mechanism, and the integration of this mechanism
into the existing MEOW system.

3.1 Design of the network event pattern

In the implementation of a pattern for network events, a key consideration was to
integrate it seamlessly with the existing MEOW codebase. This required designing
the pattern to behave similarly to the file event pattern when interacting with other
elements of the scheduler. A central principle in this design was maintaining the
loose coupling between patterns and recipes, minimizing direct dependencies between
separate components. While this might not be possible for every theoretical recipe and
pattern, designing for it could greatly improve future compatibility.

The NetworkEventPattern class is initialized with a triggering port, analogous
to the triggering path used in file event patterns. This approach inherently limits
the number of unique patterns to the number of ports that can be opened on the
machine. However, given the large number of potential ports, this constraint is unlikely
to present a practical issue. An alternative approach could have involved triggering
patterns using a part of the sent message, essentially acting as a ”header”. However,
this would complicate the process since the monitor is otherwise designed to receive
raw data. To keep the implementation as straightforward as possible and to allow for
future enhancements, I opted for simplicity and broad utility over complexity in this
initial design.

When the NetworkMonitor instance is started, it starts a number of Listener
instances, equal to the number of ports specified in its patterns. The list of patterns is
pulled when starting the monitor, so patterns added in runtime are included. Patterns
not associated with a rule are not considered, since they will not result in an event.
Only one listener is started per port, so patterns with the same port use the same
listener. When matching an event with a rule, all rules are considered, so if multiple
rules use the same triggering port, they will all be triggered.

The listeners each open a socket connected to their respective ports. This is con-
sistent with the behavior of the file event monitor, which monitors the triggering paths
of the patterns it was initialized with.

7



3.2 Integrating network events into the existing codebase

The data received by the network monitor is written as a stream to a temporary file, in
chunks of 2048 bytes. The temp files are created using the built-in tempfile library,
and are placed in the os’s default directory for temporary files. The library is used to
accommodate different operating systems, as well as to ensure the files have unique
names. When the monitor is stopped, all generated temporary files will be removed.

This design choice serves three purposes:
Firstly, this method is a practical solution for managing memory usage during

data transfer, particularly for large data sets. By writing received data directly to a
file 2048 bytes at a time, we bypass the need to store the entire file in memory at once,
effectively addressing potential memory limitations.

Secondly, the method allows the monitor to receive multiple files simultaneously,
since receiving the file will be done by separate threads. This means that a single large
file will not ”block up” the network port for too long.

Lastly, this approach allows the leveraging of existing infrastructure built for file
events. The newly written temporary file is passed as the ”triggering path” of the
event, mirroring the behavior of file events. This approach allows network events to
utilize the recipes initially designed for file events without modification, preserving
the principle of loose coupling. This integration maintains the overall flexibility and
efficiency of MEOW while extending its capabilities to handle network events.

The method will be slower, since writing to storage takes longer than keeping the
data in memory, but I have decided that the positives outweigh the negatives.

3.2.1 Data Type Agnosticism

An important aspect to consider in the functioning of the network monitor is its data
type agnosticism: the network monitor does not impose restrictions or perform checks
on the type of incoming data. While this approach enhances the speed and simplicity
of the implementation, it also places a certain level of responsibility on the recipes
that work with the incoming data. The recipes, being responsible for defining the
actions taken upon execution of a job, must be designed with a full understanding
of this versatility. They should incorporate necessary checks and handle potential
inconsistencies or anomalies that might arise from diverse types of incoming data.

3.3 Testing

The unit tests for the network event monitor were inspired by the already existing tests
for the file event monitor. Since the aim of the monitor was to emulate the behavior
of the file event monitor as closely as possible, using the already existing tests with
minimal changes proved an effective way of staying close to that goal. The tests verify
the following behavior:

• Network event patterns can be initialized, and raise exceptions when given invalid
parameters.

8



• Network events can be created, and they contain the expected information.
• Network monitors can be created.
• A network monitor is able to receive data sent to a listener, write it to a file, and

create a valid event.
• You can access, add, update, and remove the patterns and recipes associated

with the monitor at runtime.
• When adding, updating, or removing patterns or recipes during runtime, rules

associated with those patterns ore recipes are updated accordingly.
• The monitor only initializes listeners for patterns with associated rules, and rules

updated during runtime are applied.

4 Results

The testing suite designed for the monitor comprised of 26 distinct tests, all of which
successfully passed. These tests were designed to assess the robustness, reliability,
and functionality of the monitor. They evaluated the monitor’s ability to successfully
manage network event patterns, detect network events, and communicate with the
runner to send events to the event queue.

4.1 Performance Tests

To assess the performance of the Network Monitor, I have implemented a number of
performance tests. The tests were run on these machines:

Identifier CPU Cores Clock speed Memory
Laptop Intel i5-8250U 4 1.6GHz 8GB
Desktop

4.1.1 Single Listener

To assess how a single listener handles many events at once, I implemented a procedure
where a single listener in the monitor was subjected to a varying number of events,
ranging from 1 to 1,000. For each quantity of events, I sent n network events to
the monitor and recorded the response time. To ensure reliability of the results and
mitigate the effect of any outliers, each test was repeated 50 times.

Given the inherent variability in network communication and event handling, I
noted considerable differences between the highest and lowest recorded times for each
test. To provide a comprehensive view of the monitor’s performance, I have included
not only the average response times, but also the minimum and maximum times ob-
served for each set of 50 tests.

9



Event Minimum time Maximum time Average time
count Total Per event Total Per event Total Per event

Laptop
1 0.68ms 0.68ms 5.3ms 5.3ms 2.1ms 2.1ms
10 4.7ms 0.47ms 2.1s 0.21s 0.18s 18ms
100 45ms 0.45ms 7.2s 72ms 0.86s 8.6ms
1,000 0.63s 0.63ms 17s 17ms 5.6s 5.6ms

Desktop
1
10
100
1000

Table 1: The results of the Single Listener performance tests with 2 significant digits.

Figure 6: The results plotted logarithmically.

Upon examination of the results, an pattern emerges. The minimum recorded
response times consistently averaged around 0.5ms per event, regardless of the number
of events sent. This time likely reflects an ideal scenario where events are registered
seamlessly without any delays or issues within the pipeline, thereby showcasing the
efficiency potential of the network event triggers in the MEOW system.

In contrast, the maximum and average response times exhibited more variability.
This fluctuation in response times may be attributed to various factors such as network
latency, the internal processing load of the system, and the inherent unpredictability
of concurrent event handling.

10



4.1.2 Multiple Listeners

The next performance test investigates how the introduction of multiple listeners af-
fects the overall processing time. This test aims to understand the implications of
distributing events across different listeners on system performance. Specifically, we’re
looking at how having multiple listeners in operation might impact the speed at which
events are processed.

In this test, I will maintain a constant total of 1000 events, but they will distributed
evenly across varying numbers of listeners: 1, 10, 100, and 1000. By keeping the total
number of events constant while altering the number of listeners, I aim to isolate the
effect of multiple listeners on system performance.

A key expectation for this test is to observe if and how much the overall processing
time increases as the number of listeners goes up. This would give insight into whether
operating more listeners concurrently introduces additional overhead, thereby slowing
down the process. The results of this test would then inform decisions about opti-
mal listener numbers in different usage scenarios, potentially leading to performance
improvements in MEOW’s handling of network events.

Listener Minimum
time

Maximum
time

Average
time

Laptop
1 0.63s 17s 5.6s
10 0.46s 25s 7.6s
100 0.42s 20s 7.1s
1000

Desktop
1
10
100
1000

Table 2: The results of the Multiple Listeners performance tests with 2 significant
digits.

4.2 Future Work

4.2.1 Use-cases for Network Events

Since the purpose of the project was adding a feature to a workflow manager, it’s
important to consider its integration within real-life workflows and consider future
workflow designs that will capitalize on Network Events.

One specific example of an application where network event triggers could prove
useful is the workflow for The Brain Imaging Data Structure (BIDS). The BIDS work-
flow requires data to be sent between multiple machines and validated by a user.
Network event triggers could streamline this process by automatically initiating data
transfer tasks when specific conditions are met, thereby reducing the need for man-
ual management. Additionally, network triggers could facilitate user validation by

11



allowing users to manually prompt the continuation of the workflow through specific
network requests, simplifying the user’s role in the validation process.

Figure 7: The structure of the BIDS workflow. Data is transferred to user, and to the
cloud.

4.2.2 Additional Monitors

The successful development and implementation of the network event monitor for
MEOW serves as a precedent for the creation of additional monitors in the future.
This framework could be utilized as a blueprint for developing new monitors tailored
to meet specific demands, protocols, or security requirements.

For instance, security might play a crucial role in the processing and transfer of
sensitive data across various workflows. The network event monitor developed in
this project, which uses the Python socket library, might not satisfy the security re-
quirements of all workflows, especially those handling sensitive data. In such cases,
developing a monitor that leverages the ssl library could provide a solution, enabling
encrypted communication and thus improving the security of data transfer. The ar-
chitecture of the network event monitor can guide the development of an ssl monitor,
taking advantage of the similarities between the socket and ssl libraries.

Similarly, we could envision monitors developed specifically for certain protocols.
For example, a monitor designed to handle HTTP requests could be beneficial for
workflows interacting with web services. As HTTP is a common protocol, this type
of monitor would open up a vast array of potential interactions with external services,
making MEOW even more versatile.

12



5 Conclusion

With the monitor performing effectively as tested, it can be anticipated that it will
handle network event triggers correctly in live environments. This is a critical en-
hancement for MEOW, opening up possibilities for more complex, distributed, and
heterogeneous workflows, as envisioned in the design objectives.

13



References
[1] Python documentation. socket - Low-level networking interface. https://docs.

python.org/3/library/socket.html.
[2] David Marchant. Events as a Basis for Workflow Scheduling. https://sid.erda.

dk/share_redirect/CA1fbrNHoD.
[3] David Marchant. “MEOW - Enabling Dynamic Scheduling of Scientific Analysis”.

PhD thesis. University of Copenhagen, May 2021.
[4] David Marchant. meow_base. https://github.com/PatchOfScotland/meow_

base. 2023.

14


