from time import sleep import cv2 import numpy as np from robot import Robot POWER = 70 TURN_T = 7.9 # 1 degree DRIVE_T = 22 # 1 centimeter RIGHT_WHEEL_OFFSET = 4 CLOCKWISE_OFFSET = 0.96 FOCAL_LENGTH = 1691 CAMERA_MATRIX = np.array( [[FOCAL_LENGTH,0,512],[0,FOCAL_LENGTH,360],[0,0,1]], dtype=np.float32 ) DIST_COEF = np.array([0,0,0,0,0], dtype=np.float32) def find_aruco(image): aruco_dict = cv2.aruco.Dictionary_get(cv2.aruco.DICT_6X6_250) aruco_params = cv2.aruco.DetectorParameters_create() corners, ids, _ = cv2.aruco.detectMarkers( image, aruco_dict, parameters=aruco_params ) if corners is None: return [] return [(box[0], ids[i][0]) for i, box in enumerate(corners)] def find_arucos(arlo): aruco_dict = {} while True: arucos = find_aruco(arlo.take_photo()) if arucos != []: print(arucos) for aruco, id_ in arucos: aruco_dict[id_] = aruco if len(aruco_dict) >= 2: break arlo.go_diff(40, 40, 1, 0) sleep(0.3) arlo.stop() return list(arucos.items())[:2] def main(): arlo = Robot() arucos = find_arucos(arlo) aruco_positions = np.array([cv2.aruco.estimatePoseSingleMarkers( np.array([aruco[0]]), 14.5, CAMERA_MATRIX, DIST_COEF )[0][0] for aruco in arucos]) position = [ np.average(aruco_positions[:,0]), np.average(aruco_positions[:,2]) ] angle = np.rad2deg(np.arctan(position[0]/position[1])) drive_distance = np.sqrt(position[0]**2 + position[1]**2) if angle < 0: arlo.go_diff(POWER, POWER, 0, 1) sleep((abs(angle) * TURN_T)/1000) arlo.stop() else: arlo.go_diff(POWER, POWER, 1, 0) sleep((abs(angle) * TURN_T * CLOCKWISE_OFFSET)/1000) arlo.stop() arlo.go_diff(POWER, POWER + RIGHT_WHEEL_OFFSET, 1, 1) sleep((drive_distance * DRIVE_T)/1000) arlo.stop() if __name__ == "__main__": main()