😼
This commit is contained in:
72
rally2.py
72
rally2.py
@ -1,4 +1,5 @@
|
||||
import time
|
||||
from turtle import right
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
@ -6,19 +7,19 @@ from selflocalization import particle, camera
|
||||
|
||||
import robot
|
||||
|
||||
LANDMARKS = [7,11,10,6]
|
||||
LANDMARKS = [7, 11, 10, 6]
|
||||
|
||||
LANDMARK_POSITIONS = {
|
||||
7: [0,0],
|
||||
11: [300,0],
|
||||
10: [0,400],
|
||||
6: [300,400]
|
||||
7: [0, 0],
|
||||
11: [300, 0],
|
||||
10: [0, 400],
|
||||
6: [300, 400]
|
||||
}
|
||||
|
||||
POWER = 70
|
||||
|
||||
TURN_T = 7.9 # 1 degree
|
||||
DRIVE_T = 22 # 1 centimeter
|
||||
TURN_T = 7.9 # 1 degree
|
||||
DRIVE_T = 22 # 1 centimeter
|
||||
|
||||
RIGHT_WHEEL_OFFSET = 4
|
||||
|
||||
@ -27,16 +28,17 @@ CLOCKWISE_OFFSET = 0.96
|
||||
FOCAL_LENGTH = 1691
|
||||
|
||||
CAMERA_MATRIX = np.array(
|
||||
[[FOCAL_LENGTH,0,512],[0,FOCAL_LENGTH,360],[0,0,1]],
|
||||
[[FOCAL_LENGTH, 0, 512], [0, FOCAL_LENGTH, 360], [0, 0, 1]],
|
||||
dtype=np.float32
|
||||
)
|
||||
DIST_COEF = np.array([0,0,0,0,0], dtype=np.float32)
|
||||
DIST_COEF = np.array([0, 0, 0, 0, 0], dtype=np.float32)
|
||||
|
||||
SIGMA = 3
|
||||
SIGMA_THETA = 0.3
|
||||
|
||||
NUM_PARTICLES = 1000
|
||||
|
||||
|
||||
def look_around(noah, particles, cam, est_pose):
|
||||
for _ in range(24):
|
||||
# Fetch next frame
|
||||
@ -49,7 +51,8 @@ def look_around(noah, particles, cam, est_pose):
|
||||
|
||||
# List detected objects
|
||||
for i in range(len(objectIDs)):
|
||||
print("Object ID = ", objectIDs[i], ", Distance = ", dists[i], ", angle = ", angles[i])
|
||||
print(
|
||||
"Object ID = ", objectIDs[i], ", Distance = ", dists[i], ", angle = ", angles[i])
|
||||
if objectIDs[i] in LANDMARKS:
|
||||
landmark_values.append((objectIDs[i], dists[i], angles[i]))
|
||||
|
||||
@ -69,7 +72,8 @@ def look_around(noah, particles, cam, est_pose):
|
||||
p.setWeight(1.0/NUM_PARTICLES)
|
||||
|
||||
particle.add_uncertainty(particles, SIGMA, SIGMA_THETA)
|
||||
est_pose = particle.estimate_pose(particles) # The estimate of the robots current pose
|
||||
# The estimate of the robots current pose
|
||||
est_pose = particle.estimate_pose(particles)
|
||||
calc_weight(est_pose, landmark_values)
|
||||
noah.go_diff(POWER, POWER, 0, 1)
|
||||
time.sleep((15 * TURN_T)/1000)
|
||||
@ -77,9 +81,11 @@ def look_around(noah, particles, cam, est_pose):
|
||||
for p in particles:
|
||||
p.setTheta(p.theta + np.deg2rad(15))
|
||||
|
||||
est_pose = particle.estimate_pose(particles) # The estimate of the robots current pose
|
||||
# The estimate of the robots current pose
|
||||
est_pose = particle.estimate_pose(particles)
|
||||
return particles, est_pose
|
||||
|
||||
|
||||
def turn_towards_landmark(noah, particles, est_pose, landmark):
|
||||
current_position = np.array([est_pose.x, est_pose.y])
|
||||
current_theta = est_pose.theta
|
||||
@ -99,10 +105,11 @@ def turn_towards_landmark(noah, particles, est_pose, landmark):
|
||||
time.sleep((abs(360 - turn_angle) * TURN_T * CLOCKWISE_OFFSET)/1000)
|
||||
noah.stop()
|
||||
|
||||
|
||||
est_pose = particle.estimate_pose(particles) # The estimate of the robots current pose
|
||||
# The estimate of the robots current pose
|
||||
est_pose = particle.estimate_pose(particles)
|
||||
return particles, est_pose
|
||||
|
||||
|
||||
def time_to_landmark(est_pose, landmark):
|
||||
"""Kør indenfor 1 meter"""
|
||||
current_position = np.array([est_pose.x, est_pose.y])
|
||||
@ -112,19 +119,29 @@ def time_to_landmark(est_pose, landmark):
|
||||
drive_distance = np.sqrt(relative_pos[0]**2 + relative_pos[1]**2) - 100
|
||||
return (DRIVE_T * drive_distance)/1000
|
||||
|
||||
|
||||
def drive_until_stopped(noah):
|
||||
noah.go_diff(POWER, POWER+RIGHT_WHEEL_OFFSET, 1, 1)
|
||||
start = time.time()
|
||||
while True:
|
||||
# TODO blind vinkel
|
||||
forward_dist = noah.read_front_sensor()
|
||||
if forward_dist < 1000:
|
||||
noah.stop()
|
||||
break
|
||||
left_dist = noah.read_left_sensor()
|
||||
if left_dist < 400:
|
||||
noah.stop()
|
||||
break
|
||||
right_dist = noah.read_right_sensor()
|
||||
if right_dist < 400:
|
||||
noah.stop()
|
||||
break
|
||||
time.sleep(0.01)
|
||||
|
||||
end = time.time()
|
||||
return end - start
|
||||
|
||||
|
||||
def drunk_drive(noah):
|
||||
start = time.time()
|
||||
end = start + 2
|
||||
@ -146,6 +163,7 @@ def drunk_drive(noah):
|
||||
|
||||
time.sleep(0.01)
|
||||
|
||||
|
||||
def inch_closer(noah):
|
||||
noah.go_diff(POWER, POWER+RIGHT_WHEEL_OFFSET, 1, 1)
|
||||
while True:
|
||||
@ -154,21 +172,26 @@ def inch_closer(noah):
|
||||
noah.stop()
|
||||
break
|
||||
|
||||
|
||||
def initialize_particles(num_particles):
|
||||
particles = []
|
||||
for _ in range(num_particles):
|
||||
# Random starting points.
|
||||
p = particle.Particle(600.0*np.random.ranf() - 100.0, 600.0*np.random.ranf() - 250.0, np.mod(2.0*np.pi*np.random.ranf(), 2.0*np.pi), 1.0/num_particles)
|
||||
p = particle.Particle(600.0*np.random.ranf() - 100.0, 600.0*np.random.ranf(
|
||||
) - 250.0, np.mod(2.0*np.pi*np.random.ranf(), 2.0*np.pi), 1.0/num_particles)
|
||||
particles.append(p)
|
||||
|
||||
return particles
|
||||
|
||||
|
||||
def dist(particle, landmark):
|
||||
return np.sqrt((landmark[0]-particle.x)**2+(landmark[1]-particle.y)**2)
|
||||
|
||||
|
||||
def calc_angle(particle, landmark, dist):
|
||||
e_theta = np.array([np.cos(particle.theta), np.sin(particle.theta)]).T
|
||||
e_landmark = (np.array([landmark[0]-particle.x, landmark[1]-particle.y]).T)/dist
|
||||
e_landmark = (
|
||||
np.array([landmark[0]-particle.x, landmark[1]-particle.y]).T)/dist
|
||||
e_hat_theta = np.array([-np.sin(particle.theta), np.cos(particle.theta)]).T
|
||||
return np.sign(np.dot(e_landmark, e_hat_theta)) * np.arccos(np.dot(e_landmark, e_theta))
|
||||
|
||||
@ -178,6 +201,7 @@ def normal(x, mean, std):
|
||||
(np.exp(-(((x - mean)**2)/(2 * std**2))))/(np.sqrt(2 * np.pi) * std)
|
||||
)
|
||||
|
||||
|
||||
def calc_weight(particle, landmark_values):
|
||||
if landmark_values == []:
|
||||
return
|
||||
@ -186,12 +210,14 @@ def calc_weight(particle, landmark_values):
|
||||
dist_to_landmark = dist(particle, LANDMARK_POSITIONS[values[0]])
|
||||
dist_weight = normal(values[1], dist_to_landmark, SIGMA)
|
||||
|
||||
angle_to_landmark = calc_angle(particle, LANDMARK_POSITIONS[values[0]], dist_to_landmark)
|
||||
angle_to_landmark = calc_angle(
|
||||
particle, LANDMARK_POSITIONS[values[0]], dist_to_landmark)
|
||||
angle_weight = normal(values[2], angle_to_landmark, SIGMA_THETA)
|
||||
weights.append(dist_weight * angle_weight)
|
||||
|
||||
particle.setWeight(np.product(weights))
|
||||
|
||||
|
||||
def main():
|
||||
landmark_order = LANDMARKS + [
|
||||
LANDMARKS[0]
|
||||
@ -199,15 +225,17 @@ def main():
|
||||
|
||||
particles = initialize_particles(NUM_PARTICLES)
|
||||
|
||||
est_pose = particle.estimate_pose(particles) # The estimate of the robots current pose
|
||||
# The estimate of the robots current pose
|
||||
est_pose = particle.estimate_pose(particles)
|
||||
|
||||
noah = robot.Robot() # Noah er vores robots navn
|
||||
cam = camera.Camera(0, 'arlo', useCaptureThread = True)
|
||||
noah = robot.Robot() # Noah er vores robots navn
|
||||
cam = camera.Camera(0, 'arlo', useCaptureThread=True)
|
||||
|
||||
for landmark in landmark_order:
|
||||
while True:
|
||||
particles, est_pose = look_around(noah, particles, cam, est_pose)
|
||||
particles, est_pose = turn_towards_landmark(noah, particles, est_pose, landmark)
|
||||
particles, est_pose = turn_towards_landmark(
|
||||
noah, particles, est_pose, landmark)
|
||||
drive_time = time_to_landmark(est_pose, landmark)
|
||||
if not abs(drive_until_stopped(noah) - drive_time) < 0.5:
|
||||
drunk_drive(noah)
|
||||
|
Reference in New Issue
Block a user