
W2 - IPS

Nikolaj Gade (qhp695)

May 2022

Task 1

1)

a)

The string must consist of any number of pairs of
’o’s and ’g’s. The pairs can be any combination
of 2 characters, both of which are either ’o’ or ’g’.
Thus, each character can be written as, ’o|g’, and
each pair as ’(o|g)(o|g)’. The full string can be
written as:

((o|g)(o|g))*

b)

The first character must be ’o’, and it must be fol-
lowed by a character that is either ’o’ or ’g’. Fol-
lowing that, the answer is the same as the previous
problem:

o(o|g)((o|g)(o|g))*

c)

Keeping with the idea that an even number of char-
acters can be split up in ”pairs” of characters, an
odd number of ’o’s or ’g’s must result in an odd
number of both. Thus, the string will either con-
sist of an even number of ’o’s, followed by an even
number of ’g’s, or an even number of ’o’s, followed
by ’og’, followed by an even number of ’g’s. The
full string can be written as:

(oo)*(og)?(gg)*

2)

a)

’a’s and ’b’s are placed at the same time, using the
T starting symbol. After all ’a’s and ’b’s are placed,
the symbol turns to ’S ’, which places at least 1 ’c’.

T =

{
aTb

S

S =

{
c

cS

b)

Like with the previous problem, both the ’a’s and
the ’b’s are placed at the same time, but the ’b’s

are placed 2 at a time.

T =

{
aTbb

abb

c)

Once again, ’a’s and ’b’s are placed at the same
time with the starting symbol T. Afterwards, any
amount of ’a’s are placed before the ’b’s.

T =

{
aTb

S

S =

{
aS

1

3)

a)

%nonassoc letprec designates the let token as being non-associative, which means ambiguous im-
plementations will lead to a syntax error.

b)

The order of the associativity declarations provide the precedence for the operators. So in the current
way the code in written, the line let x = 10 in x + 10 > 15 will be parsed as let x = 10 in (x

< 15), but if , it would be parsed as (let x = 10 in x) < 15.

c)

The code { Let (Dec (fst $2, $4, $3), $6, $1) } creates a Let instance, which containes the
declared variable, the following expression, as well as the keyword.

Task 2

See code.

Task 3

a)

filter (('a -> bool) * ['a]) -> ['a]

b)

1 CheckExp(exp, vtable, ftable) = case exp of

2 filter(p, arr_exp) =>

3 let array_type = CheckExp(arr_exp, vtable, ftable)

4 let element_type = match array_type with

5 | Array(type) -> type

6 | _ -> Error()

7
8 let function_type = lookup(ftable, name(p))

9 match function_type with

10 | unbound -> Error()

11 | (input_type, output_type) ->

12 if input_type == element_type && output_type == bool then

13 Array(element_type)

14 else Error()

15 | _ -> Error()

2

Task 4

3

