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Preamble

This is the G-assignment1 for the Implementation of Programming Languages course (Imple-
mentering af programmeringssprog (IPS), NDAB16006U). The assignment should be solved in
groups of 1–3 students. The task is made available on Wednesday, April 27, 2022, and your
solution must be handed in by 23:59 on Friday, June 10, by uploading it on Absalon. Please
explicitly state the names of all group members on the first page of your report.

In addition to the final hand-in, there will also be a milestone handin on Friday, May 27,
where you have the chance to get feedback on your work and report so far. (It is not mandatory,
but we encourage you to submit whatever you have by then.)

This document is supplemented by a partial implementation of FASTO. Your task is to
complete the implementation, as well as to document and evaluate your work in a report. Your
submission should include the full FASTO compiler, including your tests, in a .ZIP archive, as
well as a report as a PDF document in which you present your solution.

This assignment will be assessed as either pass or fail. Passing this assignment is a prereq-
uisite for participation in the final exam (in addition to passing at least four of the five weekly
assignments), and it cannot be resubmitted.

Your solution should demonstrate competence in the entire course syllabus, understanding
of all compiler phases, and the ability to thoroughly document your solution. Partial solutions
will be considered if they are convincing and well-documented.

Please read through this entire document before you start working on the project.
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1 Project / Task Description

1.1 Overview

The task is to complete an optimizing compiler for the FASTO language2, described in detail
in Section 2. In summary, FASTO is a simple, strongly-typed, first-order functional language,
which supports arrays by special array constructors and combinators (e.g. map and reduce).

You are not expected to implement the whole compiler from scratch: We provide a partial
implementation of FASTO, and you are asked to add the missing parts. The partial implemen-
tation, as well as a couple FASTO programs with their expected outputs, can be found in the
archive fasto.zip. The archive contains five subfolders:

Fasto/ Contains the implementation of the compiler, ready for building under .NET 5.0.

tests/ Contains test programs, and corresponding input and expected output files for each.

doc/ Contains documentation, e.g. this document.

bin/ Contains a few helper scripts for compiling and executing Fasto programs, running
some standardized tests, etc.

tools/ Contains a few non-essential tools you may find useful, such as Emacs and Vim
modes for programming in FASTO.

To complete the tasks you will need to modify the following files in the Fasto/ folder:

Lexer.fsl A lexer definition for FASTO, for use with fslex.

Parser.fsp A parser definition for FASTO, for use with fsyacc.

Interpreter.fs An interpreter for FASTO.

TypeChecker.fs A type-checker for FASTO.

CodeGen.fs A translator from FASTO to MIPS assembler. The translation
is done directly from FASTO to MIPS, i.e. without passing
through a lower-level intermediate representation of the code.

CopyConstPropFold.fs Copy propagation and constant folding optimizations for FASTO.

DeadBindingRemoval.fs A FASTO optimization that removes unused (hence dead) let
bindings.

There are several other modules in the compiler, which you should not need to modify, although
you may need to read them and understand what they do. For completion, these are:

AbSyn.fs Types and utilities for the abstract syntax of FASTO.

This is a good place to start.

2FASTO stands for "Funktionelt Array-Sprog Til Oversættelse".
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SymTab.fs(i) A polymorphic symbol table.

A symbol table is useful for keeping track of information in the
various compiler passes.

RegAlloc.fs A register allocator for MIPS. You will probably not need to
touch this.

Mips.fs Types and utilities for the abstract syntax of MIPS.

CallGraph.fs Function for computing the call graph of a FASTO program.
Used as a building block in some optimizations.

DeadFunctionRemoval.fs Optimization that removes unused (“dead”) functions.

Inlining.fs Aggressive inlining of all non-recursive functions.

The main program Fasto.fsx is the driver of the compiler: it runs the lexer and parser, and
then either interprets the program or validates the abstract syntax in the type checker, rearranges
it in the optimizer, and compiles it to MIPS code. After the type checker validates the program,
the other stages assume that the program is type-correct. Some type information needs to be
retained for code generation, which is added by the type checker.

1.2 What software to use

Instructions regarding the installation of F# and other prerequisites (.NET, Mars, etc.) on Linux,
Mac, and Windows are available on Absalon.

Be aware, when you develop, of any warnings or error messages introduced by your changes
to the code — try to resolve them meaningfully. Your final submitted F# code should build
without any warnings about incomplete pattern matches, dodgy indentation, or similar.

To run the interpreter on a file located in tests/file.fo, open a terminal, go to the FASTO

directory and type bin/fasto.sh -i tests/file.fo. To compile the file without optimiza-
tions, type bin/fasto.sh -c tests/file.fo. This produces the file tests/file.asm. To
compile an optimized version of the file, type bin/fasto.sh -o tests/file.fo.

To see the results of optimization, run bin/fasto.sh -p <opts> tests/file.fo, where
<opts> is a sequence of characters referring to optimization passes. This will apply the opti-
mizations in sequence, and print the resulting FASTO program to standard output. The valid
characters in <opts> are i (for inlining), c (for copy propagation and constant folding), d (for
removing dead variable bindings) and D (for removing dead functions).

Thus, bin/fasto.sh -p icdcdD tests/file.fo would, in order, inline functions, per-
form copy/constant propagation/folding, remove dead bindings, perform copy/constant propa-
gation/folding again, remove dead bindings again, and finally remove dead functions. The -o
option accepts a similar argument to explicitly specify the pipeline. If no options are passed to
-p or -o, the default optimization pipeline will be used, which is equivalent to icdD.

To run the programs compiled by the compiler, you should use the MARS simulator [1].
MARS is written in Java, so you need a Java Runtime Environment in order to use it.

One way to run MARS and get its output directly in the command-line is by typing
java -jar bin/Mars4_5.jar tests/file.asm. (You may also use the short helper scripts
bin/mars.sh tests/file.asm or bin/compilerun.sh tests/file.fo.) MARS also has a
GUI available by typing java -jar bin/Mars4_5.jar that may be useful for tracking down
bugs in the generated MIPS code.

1.3 Features to Implement

In brief, you need to implement the following features in the assignment:
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1. multiplication, division, negation, boolean operators (and, or, not), boolean literals;
multi-variable let;

2. the array combinators replicate, filter, and scan;

3. three optimizations: “constant folding”, “copy propagation” and “dead-code removal”
(all are partially implemented, so you need to implement only a few important cases);

4. Bonus: an array-comprehension language construct.

Each project task is described in detail in Section 3, after the language description.

1.4 Submitting Your Solution

A solution to this assignment consists of two files to be uploaded to Absalon:

1. A .ZIP archive containing the full FASTO compiler, including your tests. Please use the
same directory structure as in fasto.zip (source code in Fasto/, tests in tests/, etc.).
Do not submit any binaries (remove Fasto/bin and Fasto/obj, or run make clean,
before zipping up your solution), but do make sure that your submission builds cleanly
from scratch first.

2. A report as a PDF document, which describes and evaluates your work and the main
design decisions you took. We advise that your report (excluding any code-listing appen-
dices) should not exceed this document in size, and should have an appropriate level of
detail.

Your report must start with a cover page stating the names of all group members.

Additionally, use the group submission submission feature on Absalon, i.e. submit only one
copy per group, and make sure all group members (only) are properly included.

Contents of the Report

It is largely up to you to decide what you think is important to include in the report, as long as
the following requirements are met:

Your report should justify all your changes to the compiler modules, in particular, the lexer,
parser, interpreter, type checker, machine-code generator, and the optimization modules. All
major design decisions should be presented and justified.

When evaluating your work, the main focus will be on verifying that your implementation
of the language is correct. While we do not put particular emphasis on compiler optimizations
in this course, we will also evaluate the quality of the generated code: if there are obvious
inefficiencies that could have been easily solved, you may be penalized, as they testify either
wrong priorities or lack of understanding.

You should not include the whole compiler text in your report, but you must include the parts
that were either added, i.e. new code, or substantially modified. Use code listings, and discuss
them in text, e.g., “Lines 4–6 implement this thing and lines 7–9 this other thing.” If code listings
get too big, discuss a simplified version, and add the full code listing to the appendix. Similarly,
if two subtasks are similar enough, e.g., and and or, you may just present the and and say that
or is handled similarly. Ideally, we should not need to read your raw source code.

Your report should describe whether the compilation and execution of your input/test (FASTO)
programs results in the correct/expected behavior. If it does not, try to explain why this is. In
addition, (i) it must be assessed to what extent the delivered test programs cover the language
features, and (ii) if the implementation deviates from the correct/expected behavior than the test
program(s) should illustrate the implementation shortcomings to your best extent.
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Known shortcomings in type checking and machine-code generation must be described, and,
whenever possible, you need to make suggestions on how these might be corrected.

The report should not exceed this document in size, and should have an appropriate level of
detail. You might be penalized if your report includes too many irrelevant details.

1.5 Accepted Limitations of the Compiler

It is perfectly acceptable that the lexer, parser, type checker, and code generator stops at the first
error encountered.

It can be assumed that the translated program is small, so all target addresses for jump and
branch instructions fit into constant fields of MIPS jump instructions. (i.e., label offsets fit into
16 bits, for branch instructions).

It is not necessary to free memory in the heap while running the program. You do not need
to consider stack or heap overflow in your implementation. The actual behavior of overflow
is undefined, so if errors occur during execution, or you see strange results, it might be due to
overflow.

1.6 fslex and fsyacc

Instructions related to the use of these tools will be given in the lectures, exercise and lab ses-
sions. A few pointers to useful related tutorials are available from the page “Literature and
Additional Resources” on Absalon.

2 The FASTO Language

FASTO is a simple, first-order functional language that allows recursive definitions. In addi-
tion to simple types (int, bool, char), FASTO supports arrays, which can also be nested,
by providing array constructor functions (ACs) and second-order array combinators (SOACs) to
modify and collapse arrays. Before we give details on the array constructors and combinators,
we present the syntax and an informal semantics of FASTO’s basic constructs.

2.1 Lexical and Syntactical Details

A context-free grammar of the full FASTO language (including everything you have to imple-
ment, with the exception of “bonus” task 4) is given in Figure 1. The following rules characterize
the FASTO lexical atoms and clarify the syntax.

• A name (ID) consists of (i) letters, both uppercase and lowercase, (ii) digits and (iii)
underscores, but it must begin with a letter. Letters are considered to range from A to
Z and from a to z, i.e. English letters. Some words (if, then, fun,. . . ) are reserved
keywords and cannot be used as names.

• Numeric constants, denoted by NUM, take positive values, and are formed from digits 0 to
9. Numeric constants are limited to numbers that can be represented as positive integers in
F#. A possible minus sign is not considered as part of the number literal. (Unary negation
˜ is not supported in the handed out version, but if you need a negative constant, you can
write as 0-3 instead of ˜3.)

• A character literal (CHARLIT) consists of a character surrounded by single quotes (’).
A character is:

1. A character with ASCII code between 32 and 126 except for characters ’, " and \.
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Prog → FunDecs
FunDecs → fun Fun FunDecs
FunDecs → fun Fun
Fun → Type ID ( Params ) = Exp
Fun → Type ID ( ) = Exp
Params → Type ID , Params
Params → Type ID
Type → int
Type → char
Type → bool
Type → [ Type ]
Exp → ID
Exp → ID [ Exp ]
Exp → NUM
Exp → true
Exp → false
Exp → CHARLIT
Exp → STRINGLIT
Exp → { Exps }
Exp → Exp + Exp
Exp → Exp - Exp
Exp → Exp * Exp

(. . . continued on the right)

Exp → Exp / Exp
Exp → Exp == Exp
Exp → Exp < Exp
Exp → ~ Exp
Exp → not Exp
Exp → Exp && Exp
Exp → Exp || Exp
Exp → ( Exp )
Exp → if Exp then Exp else Exp
Exp → let ID = Exp in Exp
Exp → ID ( Exps )
Exp → ID ( )
Exp → read ( Type )
Exp → write ( Exp )

Exp → iota ( Exp )
Exp → replicate (Exp , Exp )
Exp → map ( FunArg , Exp )
Exp → filter ( FunArg , Exp )
Exp → reduce ( FunArg , Exp , Exp )
Exp → scan ( FunArg , Exp , Exp )

Exps → Exp , Exps
Exps → Exp
FunArg → ID
FunArg → fn Type ( ) => Exp
FunArg → fn Type ( Params ) => Exp

Figure 1: Syntax of the FASTO Language.

2. An escape sequence, consisting of character \, followed by one of the following
characters: t, n, ’, ", or \, all with the usual interpretations.

• A string literal (STRINGLIT) consists of a sequence of characters surrounded by double
quotes ("). Escape sequences as described above can be used in string literals.

• Except within a string literal, any sequence of characters starting with // and ending at
the end of the respective line is a comment and will be ignored by the lexer.

• The + and - operators have the same precedence and are both left-associative.

• The < and == operators have the same precedence and are both left-associative, but they
both bind weaker than +.

• the rules for the if-then-else and let expressions have the weakest precedence. For
example if a<3 then 1 else 2+x is to be parsed as if a<3 then 1 else (2+x) and
not as (if a < 3 then 1 else 2) + x. (Similarly for a let expression.)

• Whitespace is irrelevant for FASTO, and no lexical atoms (except string literals) contain
whitespace. However, some whitespace may be needed to separate adjacent keywords
and/or names that would otherwise run together.

2.2 Semantics

FASTO implements a small functional language; unless otherwise indicated, the language se-
mantics are similar to that of F#, but note that components of array literals are separated by “,”
rather than “;”. FASTO does not support modifying variables. That is, with the exception of its
I/O read and write operations, FASTO is purely functional.
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2.2.1 FASTO Basics

As can be seen in Figure 1, a FASTO program is a list of function declarations. Any program
must contain a function called main that does not take any parameters. The execution of a
program always starts by calling the main function. The return type of main may be any valid
FASTO type. Beware, however, that while the supplied interpreter will show the result from
main for ease of debugging, the code generated by the compiler will ignore the program result,
and only produce output from explicit calls to the built-in function write (see below), which
only allows a few specific output types.

Function scope spans through the entire program, so any function can call another one and,
for instance, functions can be mutually recursive without special syntax. It is illegal to declare
two functions with the same name.

Each function declares its result type and the types and names of its formal parameters. It is
illegal for two parameters of the same function to share the same name. Functions and variables
live in separate namespaces, so a function can have the same name as a variable. The body
of a function is an expression, which can be a constant (for instance 5), a variable name (x),
an arithmetic expression or a comparison (a<b), a conditional (if e1 then e2 else e3), a
function call (f(1,2,3)), an expression with local declarations, (let x = 5 in x + y), etc.

2.2.2 FASTO Built-In Functions

Since FASTO is strongly typed and does not support implicit casting, the built-in functions
chr : int→ char and ord : char→ int allows one to convert explicitly between integer and
character values. They are represented internally as “regular” functions, because their types are
expressible in FASTO. In addition, we have tweaked the code for handling function applications
in various places so as to support the function length, which can be applied to any array and
returns the array’s length. This was achieved by providing specialized implementations for the
case of the AbSyn constructor Apply("length",...).

The functions read and write will operate on standard input / standard output. They are
the only FASTO constructs that have side effects (I/O). Since read and write are polymorphic,
their types are not expressible in FASTO. For this reason, the parser does not treat calls to them
as regular function calls, but instead represents them by special Read and Write nodes in the
abstract syntax.

The function read receives a type parameter that indicates the type of the value to be read:
read(int) returns int, read(char) returns char, and read(bool) returns bool. These are
all the valid uses of read.

The function write outputs the value of its parameter expression, and returns this value. Its
valid argument types are int, char, bool, and [char] (the type of string literals and arrays of
characters), e.g. write("Hello World!").

Because of the special status of read and write, it is also not possible to use them in a
curried form for map and reduce.

2.2.3 (Multidimensional) Arrays in FASTO

FASTO supports three basic types: int, char and bool. Comparisons are defined on all values
of the same basic type (with false considered less than true, but addition, subtraction and the
like are only defined on integers. As a rule, no automatic conversion between types is carried
out, e.g. if(cond) then ’c’ else 1 should be rejected by the type checker.

In addition, FASTO supports an array type constructor, denoted by []. Arrays can be nested.
For example, [char] denotes the type of a vector of characters, [[int]] denotes the type of
a two-dimensional array (i.e., array of arrays) of integers, [[[bool]]] denotes the type of a
three-dimensional array of booleans, etc. Note that, like for lists of lists in F#, the subarrays in
an array of arrays need not have the same length.
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Single-dimension indexing can be applied on arrays: if x : [[int]], then x[0] yields the
first element of array x, and x[i] yields the i+1 element of x. Both x[0] and x[i] are arrays
of integers, i.e. have type [int]. To index further into a multidimensional array, you can use
a let-binding, as in let v = m[3] in v[4]. If an index falls outside the array bounds, the
program will print an error and halt.

Arrays can be built in several ways:

• By the use of array literals, as exemplified in the following expression:
let x = 1 in { {1+x, 2+5}, {3-x, 4, 5} }
This represents a two-dimensional array of integers, thus type [[int]].
Note that the element values can be given by arbitrary expressions, not just constants.

• String literals are supported and they are identical to one-dimensional arrays of characters,
i.e. "abcd" is the same as { ’a’, ’b’, ’c’, ’d’ }.

• iota array constructor (ACs): iota(N)≡{0,1,..,N-1}, i.e. it constructs the uni-dimensional
array containing the first N natural integers starting with 0. Hence N’s value must be greater
or equal to 0. Note that N can be an arbitrary expression of integer type, and that the result
is always of type [int].

• replicate ACs: Assuming integer n, replicate(n, a) constructs an array of length n
in which all (n) elements are a. Note that a can be an array, e.g., a:[int], in which case
the result of replicate will be a two-dimensional array (in which all elements of the
outermost dimension point to a). The implementation of replicate is part of task 2, and
more detail is given there.

2.2.4 Map-Reduce-Scan-Filter Programming with FASTO Arrays

We have seen so far how arrays are constructed from a (finite) set of literals, or from a scalar
(with iota). In the following, we show how to transform an array in a computation, and how to
reduce it back to a scalar or an array of smaller dimensionality. The implementation of map and
reduce are provided in the hand-in code; task 2 requires you to implement filter and scan
throughout the compiler (and the same for replicate). Figure 2 defines the second-order-array
combinators (SOAC). They are named “second-order” because they receive arbitrary functions
as parameters.

map ( f , { a1, . . . ,an }) ≡ { f (a1), . . . , f (an) }
filter ( f , { a1, . . . ,an }) ≡ { ai1 , . . . ,aim },such that m≤ n and f (aik) = true

i.e., aik are all the elements that succeed under predicate f
reduce ( f , e, { a1, a2, . . . , an }) ≡ f (. . . f ( f (e, a1), a2), . . . an)

scan ( f , e, { a1, a2, . . . , an }) ≡ { f (e, a1), f ( f (e, a1), a2), . . . ,
f (. . . f ( f (e, a1), a2), . . . an) }

Figure 2: Second-Order Array Combinators (SOACs) in FASTO

For example, map receives as parameters a function f and an array, applies f to each element
of the array and creates a new array that contains the return values.

The filter SOAC receives as parameters a predicate f (i.e., a function of type α→ Bool)
and an array (of type [α]), and returns another array, which (i) is formed by all the elements of
the input array which succeed under predicate f , i.e., f (aik) = true, and which (ii) maintains the
partial order in which these elements appear in the input array. For example, the predicate that
results in value true for odd numbers and false for even numbers can be written as
fun bool odd(int a) = not (a == (a/2)*2), and computing all the odd positive numbers
up to N-1 can be achieved by calling filter(odd, iota(N)).

8/15



Similarly, reduce receives as parameters (i) a function f that accepts two arguments of the
same type, (ii) a start element e, and (iii) an array. (The start element e will usually, but not
necessarily, be the neutral element of the operation f , e.g., 0 for addition.) reduce computes
the accumulated result of applying the operator across all input array elements (and the start
element) from left to right. For example, assuming function plus that adds two integers (see
Figure 3 below), reduce(plus,0,{1,2,3,4}) ≡ 0+1+2+3+4 ≡ 10.

Finally, scan receives the same arguments as reduce but produces an array of the same
length as the input array, by computing all prefix-sums under the given operator. For example,
scan(plus,0,{1,2,3,4}) ≡ {0+1,0+1+2,0+1+2+3,0+1+2+3+4} ≡ {1,3,6,10}. However,
the implementation should reuse the already computed partial sums, instead of recomputing each
element of the output array from scratch, as a literal reading of the definition would suggest. That
is, f should only be called as many times as there are elements in the array.

Example
fun int plus100(int x) = x + 100
fun int plus (int x, int y) = x + y

fun [char] main() =
let N = read(int) in // read N from the standard input
let a = iota(N) in // produce a = {0,1, . . . N−1}
let b = map(plus100, a) in // b = {100,101, . . . ,N +99}
let d = reduce(plus,0,a) in // d = 0+0+1+2+ . . .+(N−1)
let c = map(chr, b) in // c = {'d','e','f',...}
let e = write(ord(c[1])) in // c[1] = 'e', ord('e') = 101
write(c) // output "def..." to screen

Figure 3: Code Example for Array Computation in FASTO

The code example in Figure 3 illustrates a simple use of arrays: First integer N is read
from keyboard, via read. Then, array a, containing the first N consecutive natural numbers, is
produced by iota. The first map will add each number in array a with 100 and will store the
result in array b, see the implementation of plus100. The values in array a are then summed up
using reduce. Next, map is called again with built-in function chr to convert array b to an array
of characters, stored in c.

Expression write(ord(c[1])) (i) retrieves the second element of array c (’e’), (ii) con-
verts it to an integer via built-in function ord, and (iii) prints it (101).

Finally, the last line prints array c (as a string). Note that, since write returns its parameter,
the result of main is c, which is of type [char], and matches the declared-result type of main.

One last observation is that map and write can be used together to print arbitrary arrays: For
example, given fun int writeInt(a) = write(a), then map(writeInt, a) prints an array
of integers a. The shortcoming is that map(writeInt, a) will create a duplicate of a, because
every call to map creates a new array.

2.2.5 Map-Reduce-Scan With Lambda Expressions (Anonymous Functions)

So far, we have presented how map, reduce and scan work when user-defined functions are
provided as arguments. This is often inconvenient, as it requires the creation of many trivial top-
level functions. Furthermore, these functions cannot access variables bound at the point where
the SOAC is invoked, which severely limits their usefulness.

To counter this, FASTO also allows lambda-expressions, a.k.a., anonymous functions, to
be passed as arguments to map, reduce, scan. (This feature is already implemented for you.)

2As a side note, if the function parameter f in reduce is associative, these constructs have well-known, efficient
parallel implementations, and are known as “map–reduce” programming.
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Anonymous functions have the following syntax:
FunArg → fn Type ( ) => Exp
FunArg → fn Type ( TypeIds ) => Exp

Figure 4 demonstrate the use of anonymous functions: Note that the last map cannot possibly
be written without the use of anonymous functions because it uses the value of variable x, which
is bound in the scope of main. Within an anonymous function, all variables are in scope that
were also in scope outside of the SOAC containing the anonymous function.

Example
fun [char] main() =
let n = read(int) in
let a = map(fn int (int i) => read(int), iota(n)) in
let x = read(int) in
let b = map(fn int (int y) => x + y, a) in
write(b)

Figure 4: A FASTO program using anonymous functions

2.2.6 More About Second-Order Array Combinators (SOACs)

So, what is the type of map? First of all, we note that the type of the result and the second
argument depend on the type of the parameter function (the first argument); map is polymorphic.
In fact, the map function is very similar to F#, and its type is (a→ b) ∗ [a]→ [b] where a and
b are arbitrary types. In presence of an expression map(f, arr), if f is a function that takes
an array of type [int] as an argument and returns an array of type [char], then the second
argument arr must have type [[int]] (i.e., a 2D-array of integers), and map(f, arr) will
return [[char]] (i.e., a 2D-array of characters or an array of strings).

In contrast, if g takes a single bool to an int, the type of map(g, arr) will be [int] and
the type of arr has to be [bool]. Similar thoughts apply to the other SOACs, whose types are:

SOAC types in FASTO, F#-like notation
map : (a → b) * [a] → [b]
filter : (a → bool) * [a] → [a]
reduce : (a * a → a) * a * [a] → a
scan : (a * a → a) * a * [a] → [a]

Function types like these cannot be expressed in FASTO, so we cannot write the argument
type of map, filter, reduce or scan. SOACs are therefore fixed in the language syntax. How-
ever, the type-checker verifies that the argument types of a SOAC satisfy the requirements implied
by the types given above; for instance checking that the function used inside reduce indeed has
type a * a → a for some type a, and that the other two arguments have type a and [a].

A second concern is code generation. The code generated for map steps through an array
in memory. However, different calls to map operate on different element types which take up
different sizes in memory (a char is stored in one byte, an int takes up four bytes, and the
elements might be arrays again, whose representation is a heap address taking up four bytes).
Therefore, the respective element types must be remembered for code generation, – it is not
possible to define a single function that handles all map calls in one and the same way. Instead,
code is generated individually for every map call. The types involved in each use of map can be
found out (i) by annotating the abstract-syntax node of each call to map during the type-checking
phase, or (ii) by maintaining and inspecting the function symbol table, which provides the type
of the function f and thereby determines the type of the current map where f is used. (At this
point we “trust” the type of f , as it has been already type checked in an earlier compilation
phase.)
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2.2.7 Array Layout Used in MIPS Code Generation

Figure 5 illustrates the array representation used in the MIPS32 code generator on several code
examples. In the following we consider that the word size is 4 bytes.

3

3 321

54

0 1 2

4 3

0 1 23

0 0 1 0 1 2

61

a = { {1, 2, 3}, 

{4, 5}, {6} } 

let a = iota(3) in

let b = replicate(4, a)

fun [int] mkArr(int a)= 

iota(a+1)

let a=iota(3) in

let b=map(mkArr,a) in..
a

2

a 3

b

a

b

1 2 3

Figure 5: Array Layout.

In essence, a FASTO array is implemented with a one-word header that holds the size of
the outer dimension of the array, followed by the content data. Arrays are thus contiguous in
memory, and they are word-aligned so the address of the header is located on a memory address
divisible by 4.

The amount of space an array uses depends on its type. While the array header always uses
one word (4 bytes), arrays of type [bool] and [char] with n elements will use n additional
bytes, and arrays of type [int] and [[a]] for some type a will use 4 · n additional bytes. If
the last element of an array is not on a word-aligned address, additional memory is wastefully
allocated but not used, to make subsequent memory allocation more convenient. This is achieved
by rounding up allocation size to the nearest multiple of 4.

For multi-dimensional arrays, the content of the array holds (one-word) pointers to arrays
of one dimension lower. Several elements of an array may hold pointers to the same lower-
dimensional array, as shown in the example in the middle of Figure 5.

3 Project Tasks

3.1 FASTO Features to Implement

Your task is to extend the implementation of the FASTO compiler in several ways, which are
detailed below. To “extend the implementation” means to do whatever is necessary for (i) le-
gal programs to be interpreted and translated to MIPS code correctly, and for (ii) all illegal
programs to be rejected by the compiler. The code handout contains comments of the form
TODO project task n wherever you need to make changes. Where relevant, you are also free
to modify other parts of the compiler, in support of your implementation of the missing features;
just be sure to clearly identify your additions or changes by suitable comments in the code, and
to explain and justify them in the report.

1. Part (a) Warm-Up: Multiplication, division, boolean operators and literals.
Add the operators and boolean literals given below to the expression language of FASTO,

and implement support for them in all compiler parts: lexer, parser, interpreter, type checker,
MIPS code generator. This task aims to get you acquainted with the compiler internals. The
implementation of these operators will be very similar to other, already provided, operators.
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Exp → Exp * Exp (∗integer−multiplication operator∗)
Exp → Exp / Exo (∗integer−division operator∗)
Exp → Exp && Exp (∗boolean−and operator∗)
Exp → Exp || Exp (∗boolean−or operator∗)
Exp → true (∗boolean−true value∗)
Exp → false (∗boolean−false value∗)
Exp → not Exp (∗boolean−negation unary operator∗)
Exp → ˜ Exp (∗integer−negation unary operator∗)

As usual, multiplication and division should bind stronger than addition and subtraction
(which already bind stronger than the comparison operators). Likewise, the && operator binds
stronger than the || operator (and both bind even looser than comparisons). All four should
be left-associative. Logical negation binds stronger than && and ||, and integer negation binds
stronger than the arithmetic operators. Examples:

• to == be || not to && be == true means (to==be) || ((not to)&&(be==true))

• ˜ a + b * c == b * c - a means ((˜a)+(b*c)) == ((b*c)-a)

The boolean operators && and || must be short-circuiting, as they are in C. This means that
the right-hand operand of && is only evaluated if the left-hand operand is true, and the right-hand
operand of || is only evaluated if the left-hand operand is false.

Also, attempts to divide by zero should be caught and reported nicely (with an error message
identifying the FASTO source location, as usual), not crash the interpreter, or cause a machine
trap in the compiled code.

Part (b) Multiple-declaration lets We can generalize the syntax of FASTO so as to allow a
single let–in to declare multiple variables, e.g..

let x = 3; y = 2*x; z = iota(y+4) in z[y]

The individual declarations are separated by semicolons, and there must always be at least one
declaration in the sequence. The above expression is completely equivalent to a series of nested
single-declaration lets, i.e.:

let x = 3 in let y = 2*x in let z = iota(y+4) in z[y]

Extend the grammar to support this generalization. You may need to add additional non-
terminals with suitable productions, as well as modify some of the existing ones. Describe all
new and modified productions (in the same style as in Figure 1) in your report, and implement
them in the lexer/parser. Remember that part of the parser’s job is also to reject syntactically
ill-formed programs, such as let in 3, or let x=3;;y=4 in x+y.

Note: the more general syntax for let should be desugared into the existing one. That is,
you should not modify the definition of the abstract syntax in AbSyn.fs, but simply construct
nested let-bindings in the parser output, like in the example above. This means that none of the
compiler phases after the parser will need to be modified to support the new syntax.

2. Implement replicate, filter and scan
This task is about implementing replicate, filter and scan.
Recall that replicate(n,a) builds an array of outermost length n by replicating n times the

element a. As such, replicate has type int * τ → [τ], where τ can be a scalar or an array
type. Please note that the parameter n must be greater or equal to zero (since it is the size of the
resulted array); otherwise program should immediately terminate with an error (message).
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Recall that filter and scan types and semantics have been described in Sections 2.2.4 and 2.2.5
and 2.2.6. These operations must be added to all compiler phases. When extending the type-
checker, consider making a list of things that must be checked and cross each item off once it has
been checked. When extending the code generator, consider writing the generated code blocks
as imperative pseudocode, e.g. with C-like syntax with explicit loops and array iterators, and
write MIPS code based on it (replacing variable names with symbolic registers and loops with
conditional jumps).

3. Copy propagation, constant folding, and dead-binding removal
High-level optimizations are usually structured as a set of optimization passes, that each

take as input a program and produce a new program that computes the same results as the old
one, but sometimes more efficiently. The FASTO compiler already comes with a number of
optimization passes and a framework for running them, but the passes that implement copy-
propagation and constant-folding, CopyConstPropFold.fs and dead-binding (code) removal
DeadBindingRemoval.fs are unfinished.

For this task, you must finish the implementation of the CopyConstPropFold and
DeadBindingRemoval modules. For copy/constant propagation and dead-binding removal this
corresponds to implementing the cases when the expression is (i) a variable, (ii) an array index,
and (iii) a let binding.

For constant folding, you should implement the cases when the expression is a multiplication
(e1 * e2) or a logical and (e1 && e2), but you are encouraged to extend the rules for the other
cases of expressions (plus, minus, or, not expressions, etc). Comments in the handed-out code
mention where you need to write your code, and the lecture/lab slides provide more information
about how the optimizer works and hints/details about what copy/constant propagation, constant
folding and dead-binding removal are, and how are they to be implemented.

(Optional – handle shadowing): The CopyConstPropFold design makes use of a simple
symbol table mapping variable names to constants or variables. This approach does not handle
well the case where variables may shadow others, as seen in the function on Figure 6.

Program with shadowing
fun int f(int a) =
let b = a in
let a = 4 in // Shadows the previous 'a'.
b // Cannot replace 'b' with 'a' now.

Figure 6: A problematic FASTO function

Your solution is not required to work properly on such programs. If you wish, you may
describe (or even implement) a possible solution to the problem.

4. Bonus: Array comprehension
This is a bonus task; as such not many hints will be given in written form but you are

encouraged to come to discuss them with the teacher/TAs.
Array (list) comprehensions are used to provide a more compact and user-friendly notation

for expressing operations on arrays. For the purpose of this task, we will use the (additional)
syntax below for comprehension:

Exp → Compreh

Compreh → [ Type Exp | CphInps ; CphRes ; Exp ]
Compreh → [ Type Exp | CphInps ; CphRes ]

CphInps → ID <- ID
CphInps → ID <- ID , CphInps

CphRes → Type ID = Exp
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Let us work it out on the example below (from file tests/comprehension.fo):
[int r*r | i <- x, j <-y; int r = (i+j) / 2; r - (r/5)*5 == 0 ]
that starts from some input arrays x and y, and eventually will produce as result an array whose
length is less than or equal to the product of the lengths of input arrays (length(x)*length(y)).

In essence:

• i <- x, j <-y corresponds to the CphInps production and has the semantics that it se-
lects any combination of elements, named i and j, from input arrays x and y, respectively.
The elements of arrays x and y are iterated in order, such that the iterator of y is faster
than that of x. Note that the constructs support an arbitrary number of input arrays.

• int r = (i+j) / 2 corresponds to the CphRes production: it combines the current se-
lection of elements into an expression that generates a result r of type int.

• r - (r/5)*5 == 0 corresponds to the optional (last) Exp in the first production of Compreh;
if this (implicitly-assumed) boolean expression evaluates to false than the current value
of r is discarded, i.e., it will not generate a new element in the result array.

• Otherwise, if the boolean expression succeeds, then a new element is added to the result
array by applying the formula before the bar (|), namely r*r, which is declared to have
type int.

Note that comprehensions can be nested. Also note that the type of r and the type of the
element of the resulted array are explicitly declared, which is not aesthetically pleasing. One
can speculate that the rationale for that is the intention that this task should be solved in early-
compilation stages, maybe at the parser and lexer level (without requiring modifications to the
abstract-syntax tree, for example.)

Big Hint: the semantics of the comprehension construct can be implemented with a
composition of SOACs! Which one?

3.2 Testing your Solution, Input (FASTO) Programs

It is your responsibility to test your implementation thoroughly. Please provide the test files in
your group submission. As a starting point, some input programs can be found in folder tests.
Note that some of these programs assume that you have already implemented multiplication,
division, filter, scan, replicate, etc. Among them:

• multilet.fo tests that the multi-let syntax is supported.
• fib.fo computes the nth Fibonacci number.
• iota.fo uses the array constructors.
• replicate.fo is a simple use of replicating a boolean seven times.
• scan.fo is a simple use of scan (with integer-addition operator).
• reduce.fo uses the reduce (array) combinator.
• ordchr.fo maps with built-in functions ord and chr.
• proj_figure3.fo is the program depicted in Figure 3.
• map_red_io.fo maps and reduces int and char arrays and performs IO.
• inline_map.fo tests the optimizations.
• io_mssp.fo implements the non-trivial algorithm for solving the “maximal segment sum”

problem, which computes the maximal sum of the elements of a contiguous segment of
an [int] array from all possible such segments.

• filter.fo uses a filter on a one-dimensional array (task 2).
• filter-on-2darr.fo uses a filter on a two-dimensional array (task 2).
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• copyConstPropFold0.fo and copyConstPropFold1.fo are some simple tests for copy
propagation and constant folding (task 3).

• dead_bnd_rem.fo can be used for testing dead-binding removal (task 3).
• comprehension.fo tests array comprehension (task 4).

If a test program foo.fo has a corresponding foo.in file, the program is intended to
compile correctly, and produce the output in foo.out when run with the input from the input
file. If no input file exist, the program is invalid, and the compiler is expected to report the
error in foo.err. You can add new test programs by following the naming convention outlined
above. Tests can be run on a Unix-compatible platform using the bin/runtests.sh script.
You can run

$ ./bin/runtests.sh

This will compile and run every test program found in the tests directory, comparing actual
output with expected output. Add the flag -i to run the tests in interpreted mode, or -o to turn
on the compiler optimizations.

3.3 Partitioning Your Work

The solution and report have to be completed within approximately five weeks time. While you
may be tempted to postpone work on the task towards the end of the period, this would be a bad
idea. Instead, try to work on the parts described in the lecture, making the required changes in
respective compiler modules and describing this part of your work in the report. It is a good idea
to reserve the last week to report writing and testing.

In particular, tasks 1 and 2 require changes to all compiler phases. Try to implement each
part of them immediately after the corresponding lecture. It is even possible to start task 1
immediately after you learn about parsing, because the rest of the code can be “pattern matched”
from similar, already implemented, code.

Task 2 can be completed immediately after the intermediate/machine-code generation lec-
ture. Task 3 can be started immediately after building the abstract-syntax tree (ABSYN) of the
input program, i.e. after parsing, as it requires (only) ABSYN-level transformations, though for
some of the finer points, you may want to wait until after the optimization lecture.
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