
Compsys - A3

Fie Hammer - gsr530, Nikolaj Ingemann Gade - qhp695 og
Frederikke Levinsen

November 21, 2021

Part I

Theoretical Part

1 Store and Forward

1.1 Processing and Delay

There are a total of 4 typical types of delays when it comes to Packet switches networks.
Nodal processing, where the delay typically occurs due to the processing, and more specifically, due to
the examination of the header and where it should be directed.
Queuing delay, where the delay typically occurs due to queuing and the data waiting to be transmitted
until it is the datas turn.
Transmission delay, where like in queuing delay, other packets has to be transmitted and has their turn
before our current packet.
Propagation delay (Wasn’t needed to be explained)

1.2 Transmission Speed

1.2.1 Part 1

We will look at the round trip time for figure 1 given in the assignment. We note that the Propagation
delay we assume that the propagation speed in all links visible is 2, 4 · 108 m/s. We also note that the
queuing delay is a part of the time stated as node delays in the figure. It is stated that the propagation
delay may be removed from the calculation. We will calculate it, but the reason for leaving it out may
be because of the very small delay times that it may cause. We are down in nanoseconds when talking
about propagation delay. This is also why cables can not be extremely long as the frequency of the signal
will then be off and cause complications.

So we can calculate the propagation delay for the 5 meter cable linking the access point and modem
as that is the only cable where the prop. delay is not stated/included and the cable is visible. it is
calculated as d

s , where d is the physical distance of the link and s is the propagation speed. So we get that
5m

2.4·108m/s
≈ 2.08 · 10−8s. so the propagation delay is 20.8 nanoseconds for the cable between the access

point and modem.

The round trip time is the time it takes for a package to travel from the client to the server and
back. As the round trip is the time is takes for the communication it includes packet-propagation delays,
packet-queuing delays in intermediate routers and switches, and packet-processing delays. If we look at
the nodal delay it includes Processing, queueing, transmission and propagation delay, such that the total
nodal delay is given by: dnodal = dproc + dqueue + dtrans + dprop. If we add the calculated propagation
delay to the first nodal delay, we should thereby be able to add all the nodal delays to calculate the RTT
of an unknown package size.

RTT = 2 ·(2ms+ 20.8ns+ 1ms+ 5ms+ 24ms) ≈ 64ms.
A RTT at around 64 ms is fine and causes no problems, whereas an RTT at above 100ms might cause

problems and delays and above 375 ms the connection is terminated.

1.2.2 Part 2

We will now assume that the package has a size of 640 KB (kilo Bytes). The upload is complete when
all bytes have been transferred. With the RTT from part 1 the total transmission time now includes the
speed between the distances. That speed is given in bits per seconds. We will thereby look at the sent
package in bits that we are going to send and we know that we have 1 byte for 8 bits. This makes the

1

package the size of 640*8 = 5120 kb (kilo bits) or 5,12 Mb (Mega bits). This way we can calculate the
seconds it takes for it to send between destinations.

The package has to be send over 54 Mb/s, 100Mb/s, 2 Mb/s and 1 Gb/s.
5.12Mb
54Mb/s +

5.12Mb
100Mb/s +

5.12Mb
2Mb/s + 5.12Mb

1000Mb/s = 0.09481s+ 0.0512s+ 2.56s+ 0.00512s = 2.71113s

So it takes around 2.71 seconds just to send the package. With all of the delay etc. (The RTT), we
get the total time to be, 2.71113s + 0.064s = 2.77513s, so it takes around 2,78 seconds for a person to
send a 640 KB data package (including overhead) sent to the diku.dk webserver.

2 HTTP

2.1 HTTP Semantics

2.1.1 Part 1

The method field in request is important as it can take different values such as GET which is always
defined. The GET value/method i responsible for retrieving the data which is identified by the Uniform
ressorce identifier (URI) and the data is returned/retrieved that it relates to. The POST method on the
other hand creates an object and binds to a specific object. A message-id field of the object is then set
by client of server and the Uniform Resource Locator (URL) allocated by the server for that object is
returned to the client. This can be done if a client fills in a form such that the typed information is saved.
However this can also be done by the method GET, but the link is then altered/extended to include the
typed information from the client.

2.1.2 Part 2

The Host header is important and necessary as it specifies the host and is required by Web proxy caches.

2.2 HTTP Headers and Fingerprinting

2.2.1 Part 1

Cookies are used from webpages to store user data for instance what users put in their shopping cards,
for spacial access for that particular user or to store information about log ins for the user. They are
used to track the users activity at a webpage. The SET -Cookie is for storing the info and Cookie is the
identification used to get the stored data/cookies. Cookies can also be used to direct commercials and
such to a client. If A client searches a lot after training gear, Commercials can be directed at that.

2.2.2 Part 2

The Entity tags (ETag) uses a weak algorithm and for a webpage to be considered identical to another
does not need it to be identical down to each byte. HEAD returns only the Header, not the content
associated with the link/header.

3 Domain Name System

3.1 DNS Provisions

The domain name system (DNS) is an application layer which makes it easier for people to read the
network addresses.Each ressource on the network is identified by their unique domain name. The DNS
must be fault tolerant which is a critical point as if it crashes it will mean that so does the internet. It
needs to be efficient which means that there needs to be servers in some big cities around the world. This
means that not all access must com from a single point. It will also lower the maintenance as it does not
require updating for each person in the world, but only a part. So there exist root DNS servers, top-level

2

domain (TLD) DNS servers and authoritative DNS servers. TLD servers include dot com etc. and dot
(the initials for a country) and so forth.

Three of the most important goals of DNS are to ensure fault tolerance, scalability and efficiency.
Explain how these insurances can (and are) met in practice. (Answer with 2-4 sentences.)

3.2 DNS Lookup and Format

3.2.1 Part 1

3.2.2 Part 2

3

Part II

Programming Part

1 Introduction

We are aiming to create an implementation of a download-only torrent peer in C. The program must
be able to parse cascade files, request peers from a tracker, request blocks from a peer, and receive and
process blocks from peers.

2 Implementation

2.1 csc parse file()

This function is given the file name of a cascade file and returns an instance of the csc file t structure,
which contains all pertinent data. After checking whether the file exists and if the 8 starting bytes are
correct, the function initializes a csc file t instance and starts setting the members using the data from
the cascade file’s header.

316 csc_file_t* casc_file_data = (csc_file_t*)malloc(sizeof(csc_file_t));

317

318 casc_file_data->targetsize = be64toh(*((unsigned long long*)&header[16]));

319 casc_file_data->blocksize = be64toh(*((unsigned long long*)&header[24]));

320 uint8_t x[32];

321 for (int i = 0; i < 32; i++) {

322 x[i] = (uint8_t)(*((unsigned long long*)&header[32+i]));

323 }

324

325 csc_hashdata_t* hash = malloc(sizeof(csc_hashdata_t));

326 memcpy(hash->x,x,SHA256_HASH_SIZE);

327

328 casc_file_data->targethash = *hash;

Then, the last members are calculated and set:

329 casc_file_data->blockcount = 1 + floor(

330 (casc_file_data->targetsize - 1.0)/casc_file_data->blocksize

331);

332 casc_file_data->trailblocksize = casc_file_data->targetsize - (

333 (casc_file_data->blockcount - 1) * casc_file_data->blocksize

334);

335 casc_file_data->completed = 0;

The final member to be set, completed, was added to the structure by us. It shows whether all blocks
have been downloaded correctly.

4

After parsing the header of the cascade file, the rest of the file (which contains all of the block hashes)
is used to initialize instances of the csc block t structure.

337 csc_block_t* block_list = malloc(

338 sizeof(csc_block_t) * casc_file_data->blockcount

339);

340

341 casc_file_data->blocks = block_list;

342

343 for (unsigned long long b = 0;b < casc_file_data->blockcount; b++) {

344 csc_block_t* block = &(block_list[b]);

345 block->index = b;

346 block->offset = b * casc_file_data->blocksize;

347 if (b == casc_file_data->blockcount - 1) {

348 block->length = casc_file_data->trailblocksize;

349 } else {

350 block->length = casc_file_data->blocksize;

351 }

352

353 block->completed = 0;

354

355 uint8_t block_x[32];

356 if (fread(block_x, 1, 32, fp) != 32) {

357 printf("Cascade file not readable\n");

358 fclose(fp);

359 return NULL;

360 }

361 csc_hashdata_t* hash = malloc(sizeof(csc_hashdata_t));

362 memcpy(hash->x,block_x,SHA256_HASH_SIZE);

363 block->hash = *hash;

364 }

Finally, the file is closed and check blocks is called in order to check if any of the file has already
been downloaded.

2.2 check blocks()

This function takes in a csc file t instance and a char*, which is the path of the target destination, and
returns the given csc file t with the completion status of each block and the entire file being marked
correctly.

The function consists mostly of code that was originally intended for casc parse file(), but since
the code is called several times during the program, it made sense to have the code in a separate function.

The function start off by setting the given csc file t instance’s completed member to 1. This will
be changed if any of the blocks, or the whole file, has an incorrect hash.

67 casc_file_data->completed = 1;

The function goes through the file and compares the hash of each block with its corresponding hash
in the cascade file. If the hashes match up, the completed member of the corresponding csc block t

instance is set to 1. If not, the completed member of both the block and the whole file is set to 0.

5

77 void* buffer = malloc(casc_file_data->blocksize);

86 SHA256_CTX shactx;

87 for(unsigned long long i = 0; i < casc_file_data->blockcount; i++)

88 {

89 uint8_t* shabuffer = malloc(sizeof(uint8_t) * SHA256_HASH_SIZE);

90 unsigned long long size = casc_file_data->blocks[i].length;

91 if (fread(buffer, size, 1, fp) != 1)

92 {

93 break;

94 }

95

96 sha256_init(&shactx);

97 sha256_update(&shactx, buffer, size);

98 sha256_final(&shactx, shabuffer);

99

100 if (memcmp((&(&casc_file_data->blocks[i])->hash)->x, shabuffer, 32) == 0) {

101 (&casc_file_data->blocks[i])->completed = 1;

102 } else {

103 (&casc_file_data->blocks[i])->completed = 0;

104 casc_file_data->completed = 0;

105 }

106 }

107 free(buffer);

If all the blocks turn out to be fully downloaded, the completed member of the file will still be 1. If
this is the case, the hash of the whole file will be checked against the one provided by the cascade file.
If the hash is not correct, all blocks are set to not be completed. This is because at least one of the
completed blocks must be wrong, but since all the block hashes are correct, we have no way of knowing
which one.

110 if (casc_file_data->completed) {

111 rewind(fp);

112 buffer = malloc(casc_file_data->targetsize);

113 uint8_t* shabuffer = malloc(sizeof(uint8_t) * SHA256_HASH_SIZE);

114 fread(buffer, casc_file_data->targetsize, 1, fp);

115

116 sha256_init(&shactx);

117 sha256_update(&shactx, buffer, casc_file_data->targetsize);

118 sha256_final(&shactx, shabuffer);

119

120 if (!(memcmp((&casc_file_data->targethash)->x, shabuffer, 32) == 0)) {

121 casc_file_data->completed = 0;

122 for (unsigned long long i = 0;i < casc_file_data->blockcount;i++) {

123 (&casc_file_data->blocks[i])->completed = 0;

124 }

125 }

126 free(buffer);

127 }

Finally, the csc file t instance, containing all the data about which blocks are completed, is returned.

6

2.3 get peers list()

The function starts off by establishing a connection to the tracker:

492 rio_t rio;

493 uint8_t rio_buf[MAX_LINE];

494

495 int tracker_socket;

496

497 tracker_socket = Open_clientfd(tracker_ip, tracker_port);

498 Rio_readinitb(&rio, tracker_socket);

Then a request for a list of peers is created and sent. The request is made using the RequestHeader

and RequestBody structures.

500 struct RequestHeader request_header;

501 memcpy(request_header.protocol, "CASC", 4);

502 request_header.version = htonl(1);

503 request_header.command = htonl(1);

504 request_header.length = htonl(BODY_SIZE);

505 memcpy(rio_buf, &request_header, HEADER_SIZE);

506

507 struct RequestBody request_body;

508 memcpy(request_body.hash, hash, 32);

509

510 inet_aton(my_ip, &request_body.ip);

511 request_body.port = be16toh(atol(my_port));

512 memcpy(&rio_buf[HEADER_SIZE], &request_body, BODY_SIZE);

513

514 Rio_writen(tracker_socket, rio_buf, MESSAGE_SIZE);

The reply is then read and the header of the response is copied into a char[] named reply header.
The length of the message is read from the header.

516 Rio_readnb(&rio, rio_buf, MAX_LINE);

517

518 char reply_header[REPLY_HEADER_SIZE];

519 memcpy(reply_header, rio_buf, REPLY_HEADER_SIZE);

520

521 uint32_t msglen = ntohl(*(uint32_t*)&reply_header[1]);

After some error-checking, the peers are created as instances of the csc peer t structure, and the
members of each are set using the data from the reply. Finally, the total amount of peers is returned.

551 int peercount = msglen/12;

552 *peers = malloc(peercount * sizeof(csc_peer_t));

553

554 for (int i = 0;i<peercount;i++) {

555 csc_peer_t peer;

556 uint8_t* peer_data = &rio_buf[REPLY_HEADER_SIZE + 12*i];

557 sprintf(peer.ip, "\%u.\%u.\%u.\%u", peer_data[0], peer_data[1], peer_data[2], peer_data[3]);

558 sprintf(peer.port, "\%u", be16toh(*((uint16_t*)&peer_data[4])));

559

560 (*peers)[i] = peer;

561 }

562 Close(tracker_socket);

563 return peercount;

7

2.4 get block()

This function attempts to download a given block from a given peer and write it to the target file.
It starts by initializing a buffer large enough to hold the entire block:

404 int buffer_size;

405 if (block->length + PEER_RESPONSE_HEADER_SIZE > MAX_LINE) {

406 buffer_size = block->length + PEER_RESPONSE_HEADER_SIZE;

407 } else {

408 buffer_size = MAX_LINE;

409 }

410 char rio_buf[buffer_size];

Then, a connection is established to the peer, and a request is created with the ClientRequest

structure and sent:

412 rio_t rio;

413 int peer_socket;

414 peer_socket = Open_clientfd(peer.ip, peer.port);

415 Rio_readinitb(&rio, peer_socket);

416

417 struct ClientRequest request;

418 memcpy(request.protocol, "CASCADE1", 8);

419 for (int i = 0;i<16;i++) {

420 request.reserved[i] = 0;

421 }

422 request.block_num = be64toh(block->index);

423 memcpy(request.hash, hash, 32);

424

425 memcpy(rio_buf, &request, PEER_REQUEST_HEADER_SIZE);

426 Rio_writen(peer_socket, rio_buf, PEER_REQUEST_HEADER_SIZE);

Like in get peer list, we read the header of our reply and figure out the message length.
The SHA256 hash of the given data is computed and compared with the expected hash:

458 uint8_t* shabuffer = malloc(sizeof(uint8_t) * SHA256_HASH_SIZE);

459

460 SHA256_CTX shactx;

461 sha256_init(&shactx);

462 sha256_update(&shactx, &rio_buf[PEER_RESPONSE_HEADER_SIZE], msglen);

463 sha256_final(&shactx, shabuffer);

464

465 if (memcmp(shabuffer, (&block->hash)->x, SHA256_HASH_SIZE) != 0) {

466 printf("Not the same hash\n");

467 Close(peer_socket);

468 return;

469 }

Finally, the data is written to the target file:

471 FILE* fp = fopen(output_file, "rb+");

472 if (fp == 0)

473 {

474 printf("Failed to open destination: %s\n", output_file);

475 Close(peer_socket);

476 return;

477 }

478

479 fseek(fp, block->offset, SEEK_SET);

480 fwrite(&rio_buf[PEER_RESPONSE_HEADER_SIZE],msglen,1,fp);

8

2.5 download only peer()

The download only peer() is the main function of the program, and performs the necessary actions to
download the requested file.

The functions starts by checking whether the cascade file exists and extracts the name of the target
file. It then calls casc parse file() to get an instance of a csc file t structure with the correct cascade
data.

161 printf("Managing download only for: \%s\n", cascade_file);

162 if (access(cascade_file, F_OK) != 0)

163 {

164 fprintf(stderr, ">> File \%s does not exist\n", cascade_file);

165 exit(EXIT_FAILURE);

166 }

167

168 char output_file[strlen(cascade_file)];

169 memcpy(output_file, cascade_file, strlen(cascade_file));

170 char* r = strstr(cascade_file, "cascade");

171 int cutoff = r - cascade_file ;

172 output_file[cutoff-1] = '\0';

173 printf("Downloading to: %s\n", output_file);

174

175 casc_file = csc_parse_file(cascade_file, output_file);

The function then loops through the blocks and creates a queue of the uncompleted ones.

177 int uncomp_count = 0;

178 queue = malloc(casc_file->blockcount * sizeof(csc_block_t*));

179 for (unsigned long long i = 0;i<casc_file->blockcount;i++) {

180 if ((&casc_file->blocks[i])->completed == 0) {

181 queue[uncomp_count] = &casc_file->blocks[i];

182 uncomp_count++;

183 }

184 }

The hash of the cascade file is then computed, so that it can be used to request peers from the tracker.

186 uint8_t hash_buf[32];

187 get_file_sha(cascade_file, hash_buf, 32);

The function now begins a while loop, looping indefinitely until the entire file is downloaded. The
loop starts off with running get peer list() in a loop until at least 1 peer is found. Then, a peer is
selected. If a good peer exists, that one is selected.

Then, a for loop is begun, calling get block() for each uncompleted block, using the peer selected
before. Once that loop is done, check blocks() is called, to test if all the blocks were downloaded
successfully.

When check blocks() marks the file as completed, the while loop is exited. The function ends with
freeing the used resources.

189 while (!casc_file->completed) {

190 int peercount = 0;

191 while (peercount == 0)

192 {

193 peercount = get_peers_list(&peers, hash_buf);

194 if (peercount == 0)

195 {

196 printf("No peers were found. Will try again in %d seconds\n", PEER_REQUEST_DELAY);

197 fflush(stdout);

198 sleep(PEER_REQUEST_DELAY);

9

199 }

200 else

201 {

202 printf("Found %d peer(s)\n", peercount);

203 }

204 }

205

206 csc_peer_t peer = (peers[0]);

207 // Get a good peer if one is available

208 for (int i=0; i<peercount; i++)

209 {

210 if (peers[i].good)

211 {

212 peer = (peers[i]);

213 }

214 }

215

216 for (int i=0; i<uncomp_count; i++)

217 {

218 get_block(queue[i], peer, hash_buf, output_file);

219 }

220

221 printf("\n");

222 casc_file = check_blocks(output_file,casc_file);

223 }

224

225 printf("File fully downloaded\n");

226 free_resources();

3 Result

Our code works as intended and is able to communicate with the provided python programs when running
locally, as well as the provided remote tracker and peer.

The speed of the download is dependent on the size of the blocks. Smaller blocks results in a higher
download time, likely because more code is being run and more requests are being sent, received, processed,
and responded to. The difference in download time between files of different block sizes is even more clear
when requesting blocks from a remote peer, which is likely a result of a larger ping.

4 Tests

We have tested our implementation by downloading the files described by each of the 5 cascade files, from
both a local peer and a remote one. The resulting files are identical to the ones our peer provided.

5 Limitations and Potential problems

6 Conclusion

The code works as it should and communication has been made with the server (the provided python
programs).

10

	I Theoretical Part
	Store and Forward
	Processing and Delay
	Transmission Speed
	Part 1
	Part 2

	HTTP
	HTTP Semantics
	Part 1
	Part 2

	HTTP Headers and Fingerprinting
	Part 1
	Part 2

	Domain Name System
	DNS Provisions
	DNS Lookup and Format
	Part 1
	Part 2

	II Programming Part
	Introduction
	Implementation
	csc_parse_file()
	check_blocks()
	get_peers_list()
	get_block()

	download_only_peer()

	Result
	Tests
	Limitations and Potential problems

	Conclusion

