
Advanced Programming 2024

Assignment Two
Monadic Programming

Due: 2024-9-22

Synopsis: Implementing a monadic interpreter and type
checker for a small language of arithmetic expressions.

1 Introduction
In this assignment you will be adding various new features to the lan-
guage implemented during the exercise classes. You will also be im-
plementing a very simple type checker. If you wish, you can base the
assignment on your own solutions to the exercises, rather than ours, but
only do so if you are quite sure that they are correct. Specifically, you will
be implementing the following:

• Extending the interpreter with a notion of state.

• Support for printing values.

• Support for key-value stores.

• Implementing a type checker.

For all tasks you are expected to add appropriate tests to the file
Eval_Tests.hs. Do not rename any of the definitions already present in
the handout. Do not change the types of any functions.

1



2 Task: Printing
In this task you will extend the EvalMmonad with a simple notion of state.
Specifically, we will add the ability to print values in an APL program.

Change the value of runEval to the following:

runEval :: EvalM a -> ([String], Either Error a)

The [String] that is returned will be the list of strings that were
printed during execution of the program. We will not actually perform
true IO during execution, so “printing” just means that the string ends
up in this list. The list must be ordered such that the first string to be
printed comes first in the list.

Add the following constructor to Exp:

data Exp
= ...
| Print String Exp

Print s e evaluates e to a value v, then prints the string “s: p(v)”,
where p(v) is the textual representation of v (see below). The expression
then returns v.

• If v is an integer, then its textual representation is the integer in
decimal notation. (Use show.)

• If v is a Boolean, then its textual representation is True and False.
(Use show.)

• If v is a function, then its textual representation is #<fun>.

2.1 Examples

> runEval $ eval $ Print "foo" $ CstInt 2
(["foo: 2"],Right (ValInt 2))
> runEval $ eval $ Let "x" (Print "foo" $ CstInt 2)

(Print "bar" $ CstInt 3)
(["foo: 2","bar: 3"],Right (ValInt 3))
> runEval $ eval $ Let "x" (Print "foo" $ CstInt 2)

(Var "bar")
(["foo: 2"],Left "Unknown variable: bar")

2



2.2 Suggested implementation

Define a type State that can store a list of the strings printed. Modify
EvalM to maintain such a State. Hint: Consider how the course notes
discussed a combined reader-and-state monad. EvalM is a little more
complicated as it also has to handle the notion of failure.

Define the following helper function:

evalPrint :: String -> EvalM ()

The function evalPrint adds a string to the list of printed strings. Use
this to implement the eval case for Print. You will also need to modify
runEval.

3 Task: Key-value store
In this task we will add a slightly more useful notion of effects, by ex-
tending APL to support an implicitly available key-value store, where a
key (which can be any value) can be associated with any value, and later
referenced again.

Add the following constructors to Exp:

data Exp
= ...
| KvPut Exp Exp
| KvGet Exp

• KvPut k_exp v_exp evaluates k_exp and v_exp to values k and v
respectively. It then records the association k 7→ v in the store and
returns v. If there is already an association for the value k, it is
replaced by the new association.

• KvGet k_exp evaluates k_exp to a value k, then retrieves the value
previously associated with k from the store. If there is no value
associated with k, KvGet fails.

3.1 Examples

> runEval $ eval $ Let "x" (KvPut (CstInt 0) (CstBool True))
(KvGet (CstInt 0))

3



([],Right (ValBool True))
> runEval $ eval $ Let "x" (KvPut (CstInt 0) (CstBool True))

(KvGet (CstInt 1))
([],Left "Invalid key: ValInt 1")
> runEval $ eval $ Let "x" (KvPut (CstInt 0) (CstBool True))

(Let "y" (KvPut (CstInt 0) (CstBool False))
(KvGet (CstInt 0)))

([],Right (ValBool False))

3.2 Suggested implementation

Extend the State type to also contain a key-value mapping.
Define the following helper functions:

evalKvGet :: Val -> EvalM Val
evalKvPut :: Val -> Val -> EvalM ()

Use this to implement the eval cases. You will also need to modify
runEval.

4 Task: Type checking
In this task you will develop a type checker for APL. Since APL is dy-
namically typed, all we can check for is that the program does not contain
references to variables that are not in scope. The purpose of this task is
for you to demonstrate that you can construct a monad definition from
scratch. Therefore, the code handout is somewhat spartan.

The module APL.Check exports a function

checkExp :: Exp -> Maybe Error

where Error is a synonym for String. This function must return Just
(along with an error message) if the provided expression at any point
references a variable that is not bound by an enclosing Let or Lambda.
You must implement this function by making use of a monad, similar
to the evaluator. In particular, you must take a monadic approach to
error handling, and a monadic approach to tracking which variables are
in scope.

Also add appropriate tests to APL.Check_Tests.

4



4.1 Examples

Note that the specific error message is up to you.

> checkExp $ CstInt 2
Nothing
> checkExp $ Var "x"
Just "Variable not in scope: x"
> checkExp $ Lambda "x" (Var "x")
Nothing

5 Code handout
The code handout consists of the following nontrivial files.

• a2.cabal: Cabal build file. Do not modify this file.

• runtests.hs: Test execution program. Do not modify this file.

• src/APL/AST.hs: The APL AST definition. Do not modify this file.

• src/APL/Check.hs: Where you will implement the type checker.

• src/APL/Check_Tests.hs: Tests for the type checker.

• src/APL/Eval.hs: The APL evaluation function.

• src/APL/Eval_Tests.hs: The evaluation tests. Some tests are al-
ready included. You are expected to add more.

6 Your Report
You are expected to comment on the interesting details of your implemen-
tation. You are not expected to give a line-by-line walkthrough of your
code. Most importantly, you are expected to reflect on the quality of your
code:

• Do you think it is functionally correct? Why or why not?

5



• Is there some improvement you’d have liked to make, but didn’t
have the time?

It is more important to be aware of the strengths or shortcomings of
your solution, than it is to have a complete solution.

6.1 The structure of your report

Your report must be structured exactly as follows:

Introduction: Briefly mention very general concerns, your own estima-
tion of the quality of your solution, and possibly how to run your
tests.

A section for each task: Mention whether your solution is functional,
which cases it fails for, and what you think might be wrong.

A section answering the following numbered questions:

1. What is the asymptotic complexity of your implementation of
Print? Can this be improved?

2. In your implementation, if a program keeps updating the same
key with KvPut, does the memory usage of the program remain
constant or does it increase?

3. In TryCatch e1 e2, if e1 fails after performing some effects, are
those effects visible in e2, and which of your tests demonstrate
this? If you wanted different behaviour (either making the
effects visible or invisible), what would you need to change in
your implementation? Show exactly what the new code would
look like.

All else being equal, a short report is a good report.

6



7 Deliverables for This Assignment
You must submit the following items:

• A single PDF file, A4 size, no more than 5 pages, describing each
item from report section above.

• A single zip/tar.gz file with all code relevant to the implementation,
including at least all the files from the handout. For this assignment
it is not necessary to add additional files.

Remember to follow the general assignment rules listed on the course
homepage.

8 Assessment
You will get written qualitative feedback, and points from zero to four.
There are no resubmissions, so please hand in what you managed to
develop, even if you have not solved the assignment completely.

7


