
Advanced Programming 2024

Assignment Five
Property-Based Testing

Due: 2024-10-13

Synopsis: Testing of functionality from previous assignments
using QuickCheck

1 Introduction
In this assignment you will do property-based testing of components
from earlier assignments: printer, parser, evaluator and type checker.
Specifically, you will be implementing the following:

• A good quality generator for expressions.

• A property for the interaction of parsing and printing.

• A property for the interaction of type checking and evaluation.

• Bug fixes revealed by the properties.

2 Task: A better generator
In this task you will modify the expression generator to improve the
distribution of generated expressions.

Change the definition of genExp so that the expCoverage property
passes. In particular this means that

• Between 20% and 80% of expressions should have domain errors
(division by zero or negative exponent) reported by checkExp.

• Between 20% and 80% of expressions should have type errors re-
ported by checkExp.

• Between 5% and 30% of expressions should have variable errors
reported by checkExp.

1



• At least 50% of expressions should contain a variable between 2 and
4 characters long.

You are permitted to change the signature of checkExp, but make sure
to also change the definition of arbitrary for Exp accordingly.

2.1 Suggested Implementation

Use frequency instead of oneof to better control the distribution. Keep
track of the variables in scope by adding an additional parameter of type
[VName] to genExp.

3 Task: A property for parsing/printing
In this task you will implement the property parsePrinted, which checks
that printing an expression and parsing the resulting string gives back
the original expression.

When QuickCheck finds a counter-example to parsePrinted you
must decide if the error is in the implementation, the generator or the prop-
erty. Then fix the error and continue to test until QuickCheck passes the
property with at least 10000 tests (see the course notes for how to change
the number of tests).

4 Task: A property for checking/evaluating
In this task you will implement the property onlyCheckedErrors, which
checks that evaluating an expression only results in those errors detected
by checkExp.

Note that checkExp now returns a list of errors. The intention is that
this list contains all errors that might occur during evaluation.

Define onlyCheckedErrors so that it evaluates the given expression;
if the evaluation returns an error, that error must be in the list returned by
checkExp. Check the property with as many tests as necessary to produce
a counterexample.

For this task you do not need to fix the implementation, but you should
analyse and describe the problem (see report requirements).

2



5 Code handout
The code handout consists of the following nontrivial files.

• a5.cabal: Cabal build file. Do not modify this file.

• runtests.hs: Test execution program. Do not modify this file.

• src/APL/AST.hs: The APL AST definition. You may only modify
printExp in this file.

• src/APL/Error.hs: The APL Error definition. Do not modify this
file.

• src/APL/Parser.hs: The parser.

• src/APL/Check.hs: The type checker.

• src/APL/Eval.hs: The APL evaluation function.

• src/APL/Tests.hs: The property tests.

6 Your Report
You are expected to comment on the interesting details of your implemen-
tation. You are not expected to give a line-by-line walkthrough of your
code. Most importantly, you are expected to reflect on the quality of your
code:

• Do you think it is functionally correct? Why or why not?

• Is there some improvement you’d have liked to make, but didn’t
have the time?

It is more important to be aware of the strengths or shortcomings of
your solution, than it is to have a complete solution.

3



6.1 The structure of your report

Your report must be structured exactly as follows:

Introduction: Briefly mention very general concerns, your own estima-
tion of the quality of your solution, and possibly how to run your
tests.

A section for each task: Mention whether your solution is functional,
which cases it fails for, and what you think might be wrong.

A section answering the following numbered questions:

1. Can programs produced by your generator loop infinitely? If
so, would it be possible to avoid this?

2. What counter-examples did parsePrinted produce? For each
counter-example, which component (implementation, genera-
tor or property) did you fix?

3. What is the mistaken assumption in checkExp?

All else being equal, a short report is a good report.

7 Deliverables for This Assignment
You must submit the following items:

• A single PDF file, A4 size, no more than 5 pages, describing each
item from report section above.

• A single zip/tar.gz file with all code relevant to the implementation,
including at least all the files from the handout. For this assignment
it is not necessary to add additional files.

Remember to follow the general assignment rules listed on the course
homepage.

4



8 Assessment
You will get written qualitative feedback, and points from zero to four.
There are no resubmissions, so please hand in what you managed to
develop, even if you have not solved the assignment completely.

5


