
Advanced Programming 2024

Assignment Four
Free Monads

Due: 2024-10-6

Synopsis: Implementing free monad-based interpreters for a
small arithmetic language.

1 Introduction
In this assignment you will implement an interpreter for APL, based on
free monads. In particular, you will extend what you developed in the
exercises with new effects and new ways of interpreting them. Since the
handout for the assignment differs from the solution to the exercises, do
not base the assignment on your own solutions to the exercises. You
must use the assignment handout. Specifically, you’ll be implementing
the following:

• Try-catch effects.

• A pure and IO-based interpretation of key-value store effects.

• Interactive missing key recovery.

• A transactional computation effect.

For all tasks you are expected to add appropriate tests to the file
Interp_Tests.hs. For information on how to test the IO-based effects,
please refer to the week 4 exercises.1 Do not rename any of the definitions
already present in the handout and do not change their types unless the
assignment text explicitly instructs you to do so.

To make testing easier, we recommend that you replace the definition
of eval in APL.Eval with your version of eval from your solution to
assignment 2. A complete version of eval is not needed to fully solve
the assignment; all functionality in this assignment can be tested without

1github.com/diku-dk/ap-e2024-pub/tree/main/week4#testing-runevalio

1



using eval by constructing appropriate EvalM values (directly or by using
the interface functions in APL.Monad).

2 Task: The TryCatchOp Effect
The TryCatchOp effect is for exception handling. A TryCatchOp m1 m2
effect says to interpret m1; if it fails (i.e., returns a Left value), then
interpret m2. Otherwise, the result is the result of interpreting m1. For
example,

> runEval $ Free $ TryCatchOp (failure "Oh no!") (pure "Success!")
([], Right "Success!")
> divZero = CstInt 1 ‘Div‘ CstInt 0
> runEval $ eval $ TryCatch (CstInt 5) divZero
([], Right $ ValInt 5)
> badEql = CstInt 0 ‘Eql‘ CstBool True
> runEvalIO $ eval $ TryCatch badEql divZero
Left "Division by zero"

To start, extend EvalOpwith a TryCatchOp constructor:

-- APL.Monad
data EvalOp a
= ...
| TryCatchOp a a

and extend EvalOp’s Functor instance appropriately. Also complete the
definition of catch.

Lastly, add support forTryCatchOp effects torunEval’ inAPL.InterpPure
and to runEvalIO’ in APL.InterpIO; runEval and runEvalIO do not
need to treat TryCatchOp identically; for example, when interpreting
TryCatchOp m1 m2 it’s permissible for the effects of m1 to be visible in m2
in runEvalIO but not visible in runEval (or vice versa).

3 Task: Key-value Store Effects
In this task, you’ll add KvGetOp and KvPutOp operations for reading and
storing values from the key-value store, respectively. For example,

2



> put0 m = KvPutOp (ValInt 0) (ValInt 1) m
> get0 = Free $ KvGetOp (ValInt 0) $ \val -> pure val
> runEval $ Free $ put0 get0
([],Right (ValInt 1))

Start by extending the EvalOp type with the KvGetOp and KvPutOp
constructors:

-- APL.Monad
data EvalOp a
= ...
| KvGetOp Val (Val -> a)
| KvPutOp Val Val a

then, extend EvalOp’s Functor instance appropriately. Next, complete
the definitions of evalKvGet and evalKvPut using KvGetOp and KvPutOp,
respectively.

Finally, extend runEval’ in APL.InterpPure to support KvGetOp and
KvPutOp effects as follows:

• On KvGetOp key k effects, runEval’ should lookup the key in the
state (the function lookup will be useful). If the key is contained in
the state with value val, continue interpreting on k val. Otherwise,
fail by returning a Leftwith an appropriate error message.

• On KvPutOp key val m effects, runEval’ should should insert the
association (key, val) into the state. If the key already exists in
the state, it should be replaced by the new association.

3.1 Using a Database File for the Key-Value Store

Rather than storing the key-value store in a pure manner and passing state
around as a parameter during interpretation (as you did in runEval), in
runEvalIOwe can instead write the key-value to a database file on disk.

To keep things simple, the database will just be a simple text file.
We need a way read and write data from the database—the following
functions are provided to do so:

-- APL.InterpIO
writeDB :: FilePath -> State -> IO ()
readDB :: FilePath -> IO (Either Error State)

3



Note that readDB returns an error in the form of a Left-expression when
trying to read an invalid database; if this happens, your interpreter should
simply propagate the error and return the Left-expression.

For simplicity, the database can only store ValInt and ValBool values;
function values are not supported. Your implementation is not expected
to handle storing/reading of ValFun values to/from the database.

Your task is to modify runEvalIO’ so that it stores state (i.e., the key-
value store) in a database file and to add support for KvGetOP and KvPutOp
effects to runEvalIO’.

To start, add support for state effects to runEvalIO’ so that it stores
state in the database file:

• On StatePutOp s k effects, runEvalIO’ should write the state s to
the file db, where db is the FilePath parameter to runEvalIO’. If
the file already exists, you should simply overwrite it. (Don’t check
if the file exists nor try to read from it—just write the state to the
file; if the file already exists, it will be overwritten). Use writeDB to
write the state to the database file.

• On StateGetOp k effects, runEvalIO’ should read the database in
from db (using readDB) and then pass it to the k function. (An empty
database file is created when the interpreter runs, so the database
file will always exist.)

Finally, extend runEvalIO to support KvGetOp and KvPutOp effects as
follows:

• On KvGetOp key k effects, runEvalIO’ should read the database in
from db and then lookup the key in the database. As with runEval,
return Left if the key doesn’t exist in the database. Otherwise, pass
the associated value to k and continue.

• OnKvPutOp key val m effects, runEvalIO’ should read the database
in from the db file to get a value of type State; let’s call this value
dbState. It should then insert the association (key, val) into
dbState to construct a new state dbState’. As with runEval, if
the key key already exists, the corresponding association should be

4



replaced by the new one. Finally, overwrite the db database file with
dbState’ by using writeDB.2

For your testing, remember that the database only supports ValInt
and ValBool values; you do not need to add tests for storing/reading
ValFun values. Also note that runEvalIO clears the database on each
execution, so database values will not persist between invocations of
runEvalIO.

3.2 Missing keys

Having a database is great and all, but our computations still fail if we
look for a key that isn’t in the database. Since runEvalIO already uses
IO, instead of failing, we can interactively prompt the user to specify the
value of a missing key during interpretation.

Here’s an example of how this should work:

> runEvalIO $ eval $ KvGet $ CstInt 0
Invalid key: ValInt 0. Enter a replacement: ValInt 5
Right (ValInt 5)
> runEvalIO $ evalKvGet $ ValInt 0
Invalid key: ValInt 0. Enter a replacement: ValBool True
Right (ValBool True)

Add support for this functionality to runEvalIO’. To do so, you’ll need
to modify how runEvalIO’ interprets KvGetOp key k effects. When the
key key doesn’t exist in the database file, your implementation must print
a message to the terminal saying that the given key is invalid and then
prompt the user for a replacement. The entered replacement should ei-
ther be a ValInt or a ValBool. All other inputs (notably, ValFun values)
are not supported. To convert the input string into a Val, use the provided
readVal :: String -> Maybe Val function in APL.InterpIO. When
the input is invalid (i.e., not of the form specified above), readValwill re-
turn Nothing; in this case, your interpreter should fail with an appropriate
message:

2This isn’t a particularly efficient way to insert a key-value pair—we do it this way
for simplicity.

5



> runEvalIO $ eval $ KvGet $ CstInt 0
Invalid key: ValInt 0. Enter a replacement: lol
Left "Invalid value input: lol"

Hint: You can use the prompt :: String -> IO String function de-
fined in APL.InterpIO to get input from the user.
Hint 2: To test your missing key handling, you can use captureIO to
simulate input like so:

-- APL.Interp_Tests
testCase "Missing key test" $ do
(_, res) <-
captureIO ["ValInt 1"] $
runEvalIO $
Free $ KvGetOp (ValInt 0) $ \val -> pure val

res @?= Right (ValInt 1),

4 Task: TransactionOp effect
Another thing we might want for our database is to have transactional or
atomic writes to it. First, add the TransactionOp effect to the EvalOp type:

-- APL.Monad
data EvalOp a
= ...
| TransactionOp (EvalM ()) a

Notice that it has an EvalM() payload—when this payload is interpreted,
any effects that change the state (i.e., the key-value store) should be all-
or-nothing: that is, they should only be manifested if the computation
succeeds (i.e, it returns result Right ()). If the computation fails (returns
Left e), then the state (i.e., the key-value store) should be rolled back to
the point it was at before the payload was executed. For example,

> goodPut = evalKvPut (ValInt 0) (ValInt 1)
> badPut = evalKvPut (ValInt 0) (ValBool False) >> failure "die"
> get0 = KvGet (CstInt 0)
> runEval $ transaction goodPut >> eval get0
([],Right (ValInt 1))

6



> runEval $ transaction badPut >> eval get0
([],Left "Invalid key: ValInt 0")

Note that even if the enclosed computation fails, the error should not be
propagated. For example,

> runEval $ transaction badPut
([],Right ())

Extend the Functor instance of EvalOp to support TransactionOp
and, using TransactionOp, complete the definition of the transaction
function.

As usual, extend runEval’ with support for TransactionOp effects.
To do so, you should only keep changes to the state (i.e., the key-value
store) from executing the enclosed EvalM () computation if it succeeds;
otherwise continue execution with the prior state. You must include the
result from any PrintOp effects that occurred before the failure (in the
transactional computation) in the final output, regardless of whether or
not the transactional computation succeeded:

> runEval $ transaction (evalPrint "weee" >> failure "oh shit")
(["weee"],Right ())

You must also correctly handle nested transactions. For example,

> runEval $ transaction (goodPut >> transaction badPut) >> eval get0
([],Right (ValInt 1))
> runEval $ transaction (transaction badPut) >> eval get0
([],Left "Invalid key: ValInt 0")

Next, add support for TransactionOp to runEvalIO’. You should only
manifest writes to the database if the whole transactional computation
succeeds. To do this, before execution of the transactional computa-
tion, make a temporary copy of the database file. To make temporary
databases, use the withTempDB function, which creates a fresh temporary
database, passes it to a function returning an IO-computation, executes
the computation, deletes the temporary database, and finally returns the
result of the computation:

7



-- APL.InterpIO
withTempDB :: (FilePath -> IO a) -> IO a
withTempDB m = do
tempDB <- newTempDB -- Create a new temp database file.
res <- m tempDB -- Run the computation with the new file.
removeFile tempDB -- Delete the temp database file.
pure res -- Return the result of the computation.

Note that newTempDB ensures that the database tempDB is fresh; i.e. that
there are no other files named tempDB. You must use withTempDB to create
temporary databases; do not use newTempDB. To copy a database, use the
copyDB function:

-- APL.InterpIO
copyDB :: FilePath -> FilePath -> IO ()

During execution of the transactional computation, perform all writes
and reads on the temporary database file. If the computation succeeds,
subsequently copy the temporary database to the actual database and
continue interpreting. If it fails, simply continue interpreting. As before,
you must also correctly handle nested transactions. Hint: The function
you pass withTempDB should call copyDB to copy the database to the
temporary database. If the transactional computation succeeds, you will
have to call copyDB again to copy the temporary database back.

5 Code handout
The code handout consists of the following nontrivial files.

• a4.cabal: Cabal build file. Do not modify this file.

• runtests.hs: Test runner. Do not modify this file.

• src/APL/AST.hs: AST definition. Do not modify this file.

• src/APL/Eval.hs: An incomplete evaluator corresponding to the
solution to the week 2 exercises. You should replace the definition
of eval with your complete version of eval from your solution to
assignment 2.

8



• src/APL/InterpIO.hs: Contains the incomplete IO-basedrunEvalIO
interpreter.

• src/APL/InterpPure.hs: Contains the incomplete pure runEval
interpreter.

• src/APL/Interp_Tests.hs: An interpreter test suite where you
will add plentiful tests.

• src/APL/Monad.hs: Contains all things related to the evaluation
monad. Note that some definitions from assignment 2 have moved
from APL.Eval to APL.Monad in this assignment; e.g. Val and defi-
nitions related to the environment.

• src/APL/Util.hs: Utility functions needed for serialization, testing
IO, and making temporary database files. You can safely ignore this
file. Do not modify this file.

6 Your Report
You are expected to comment on the interesting details of your implemen-
tation. You are not expected to give a line-by-line walkthrough of your
code. Most importantly, you are expected to reflect on the quality of your
code:

• Do you think it is functionally correct? Why or why not?

• Is there some improvement you’d have liked to make, but didn’t
have the time?

It is more important to be aware of the strengths or shortcomings of
your solution, than it is to have a complete solution.

6.1 The structure of your report

Your report must be structured exactly as follows:

Introduction: Briefly mention very general concerns, your own estima-
tion of the quality of your solution, and possibly how to run your
tests.

9



A section for each task: Mention whether your solution is functional,
which cases it fails for, and what you think might be wrong.

A section answering the following numbered questions:

1. Consider interpreting a TryCatchOp m1 m2 effect where m1 fails
after performing some key-value store effects.

(a) Is there a difference between your pure interpreter and
your IO-based interpreter in terms of whether the key-
value store effects that m1 performed before it failed are
visible when interpreting m2? If so, why?

(b) Suppose you’ve implemented your interpreters such that
the key-value store effects that m1performed before it failed
are always visible when interpreting m2. Without chang-
ing the interpreters, is it possible to have different behav-
ior where the key-value store effects in m1 are invisible in
m2? If so, how? If not, why not?

2. Why does the computation payload in the

TransactionOp (EvalM ()) a

constructor return a () value? Do any other return types make
sense? Justify your answer.

All else being equal, a short report is a good report.

7 Deliverables for This Assignment
You must submit the following items:

• A single PDF file, A4 size, no more than 5 pages, describing each
item from report section above.

• A single zip/tar.gz file with all code relevant to the implementation,
including at least all the files from the handout. For this assignment
it is not necessary to add additional files.

Remember to follow the general assignment rules listed on the course
homepage.

10



8 Assessment
You will get written qualitative feedback, and points from zero to four.
There are no resubmissions, so please hand in what you managed to
develop, even if you have not solved the assignment completely.

11


