
Advanced Programming 2024

Assignment Three
Parsing Arithmetic Expressions

Due: 2024-9-29

Synopsis: Implementing a parser for a small arithmetic lan-
guage.

1 Introduction
In this assignment you will be extending the parser developed during the
exercises to support all of APL. Specifically you will add these features
to the parser in the Parsermodule:

• Function application

• Additional operators (== and **).

• Syntax for print, put, and get.

• Lambdas, let-binding and try-catch.

For all tasks you are expected to add appropriate tests to theParser_Tests
module. Do not rename any of the definitions already present in the
handout, and do not change their types.

The grammar supported by the handout is as follows, without left-
factorisation and handling of operator priority. Each task describes an
extension of the grammar which you must implement. You may also do
other grammar transformations you find necessary.

1

Atom ::= var | int | bool | “(” Exp “)”
FExp ::= Atom
LExp ::= FExp

| “if” Exp “then” Exp “else” Exp
Exp ::= LExp

| Exp “+” Exp
| Exp “-” Exp
| Exp “*” Exp
| Exp “/” Exp

The grammar has some redundancies (mainly the FExp nonterminal)
when compared to the one developed during the exercises, but it recog-
nises the same language. The redundancies serve to make it easier to
extend in the tasks below. You may find it necessary to adjust the code
handout to completely match the grammar.

You must refactor the grammar to handle left recursion and operator
precedence as appropriate.

2

2 Task: Function application
In this task, you must implement function application by juxtaposition,
similar to Haskell notation.

We extend the grammar with the following production:

FExp ::= . . . | FExp FExp

Just as in Haskell, function application is left associative and binds
tighter than any infix operator (this part is already expressed in the gram-
mar), meaning a b c is parsed as (a b) c. In the AST, application is
represented by the Apply constructor.

2.1 Examples

> parseAPL "" "x y z"
Right (Apply (Apply (Var "x") (Var "y")) (Var "z"))
> parseAPL "" "x(y z)"
Right (Apply (Var "x") (Apply (Var "y") (Var "z")))
> parseAPL "" "x if x then y else z"
Left ...

3 Task: Equality and power operators
In this task you must implement two new operators.

We extend the grammar with the following productions:

Exp ::= . . .
| Exp “==” Exp
| Exp “**” Exp

The disambiguation rules are as follows:

• == is left-associative and has the lowest precedence of all operators.

• ** is right-associative and has the highest precedence of all opera-
tors.

3

> parseAPL "" "x*y**z"
Right (Mul (Var "x") (Pow (Var "y") (Var "z")))
> parseAPL "" "x+y==y+x"
Right (Eql (Add (Var "x") (Var "y")) (Add (Var "y") (Var "x")))

4 Task: Printing, putting, and getting
In this task you must implement the print, put, and get operations.

We extend the grammar with the following productions:

Exp ::= . . .
| “print” string Atom
| “get” Atom
| “put” Atom Atom

The string terminal denotes string literals. These take the form
of double quotes enclosing zero or more characters, excluding double
quotes. You must implement parsing of these yourself.

4.1 Examples

> parseAPL "" "put x y"
Right (KvPut (Var "x") (Var "y"))
> parseAPL "" "get x + y"
Right (Add (KvGet (Var "x")) (Var "y"))
> parseAPL "" "getx"
Right (Var "getx")
> parseAPL "" "print \"foo\" x"
Right (Print "foo" (Var "x"))

5 Task: Lambdas, let-binding and try-catch
In this task you implement the final bits of APL syntax: let-binding and
try-catch. We extend the grammar with the following productions:

4

LExp ::= . . .
| “\” var “->” Exp
| “try” Exp “catch” Exp
| “let” var “=” Exp “in” Exp

> parseAPL "" "let x = y in z"
Right (Let "x" (Var "y") (Var "z"))
> parseAPL "" "let true = y in z"
Left ...
> parseAPL "" "x let v = 2 in v"
Left ...

6 Code handout
The code handout consists of the following nontrivial files.

• a3.cabal: Cabal build file. Do not modify this file.

• src/APL/AST.hs: AST definition. Do not modify this file.

• src/APL/Eval.hs: An incomplete evaluator corresponding to the
solution to the week 2 exercises. Feel free to replace this module
with one of your own.

• src/APL/Parser.hs: The incomplete parser where you will do most
of your work.

• src/APL/Parser_Tests.hs: A parser test suite where you will add
plentiful tests.

• src/runtests.hs: Test runner. Do not modify this file.

• src/apl.hs: Interpreter program that ties together parser and eval-
uator for running APL programs from files.

7 Your Report
You are expected to comment on the interesting details of your implemen-
tation. You are not expected to give a line-by-line walkthrough of your

5

code. Most importantly, you are expected to reflect on the quality of your
code:

• Do you think it is functionally correct? Why or why not?

• Is there some improvement you’d have liked to make, but didn’t
have the time?

It is more important to be aware of the strengths or shortcomings of
your solution, than it is to have a complete solution.

7.1 The structure of your report

Your report must be structured exactly as follows:

Introduction: Briefly mention very general concerns, your own estima-
tion of the quality of your solution, and possibly how to run your
tests.

A section for each of the tasks: Mention whether your solution is func-
tional, which cases it fails for, and what you think might be wrong.

A section answering the following numbered questions:

1. Show the final and complete grammar with left-recursion re-
moved and all ambiguities resolved.

2. Why might or might it not be problematic for your implemen-
tation that the grammar has operators * and **where one is a
prefix of the other?

All else being equal, a short report is a good report.

6

8 Deliverables for This Assignment
You must submit the following items:

• A single PDF file, A4 size, no more than 5 pages, describing each
item from report section above.

• A single zip/tar.gz file with all code relevant to the implementation,
including at least all the files from the handout. For this assignment
it is not necessary to add additional files.

Remember to follow the general assignment rules listed on the course
homepage.

9 Assessment
You will get written qualitative feedback, and points from zero to four.
There are no resubmissions, so please hand in what you managed to
develop, even if you have not solved the assignment completely.

7

