
1 of 4

AP Assignment 2:
Monadic Programming

Nikolaj Gade (qhp695), Sebastian Larsen Prehn (vpz655), Alba Dekens (dmb904)

1 Introduction
The implemented code compiles and passes all the tests which we wrote for it. Our testing is not
exhaustive, but tests the general functionality of all the functions implemented. We sadly did not have
the time to accurately showcase opposite behavior as instructed for the third question of the Questions
section, so have opted to instead submit the code at its latest working iteration that satisfies all the other
requirements as we have understood them.

2 Printing
We successfully added the feature of being able to print values in our APL program. We added the new
type State to hold a list of strings, and then added the helper-function evalPrint to help with the logic
of adding an entry to our new type State

73 evalPrint :: String → EvalM ()
74 evalPrint a = EvalM $ _env state → (state ++ [a], Right ())

We modified EvalM to handle this new State

1 newtype EvalM a = EvalM (Env → State → (State, Either Error a))

and modified the Applicative to include the State and the Monad

1 instance Monad EvalM where
2 EvalM x >>= f = EvalM $ \env state →
3 case x env state of
4 (state', Left err) → (state', Left err)
5 (state', Right x') →
6 let EvalM y = f x'
7 in y env state'

where we check to ensure that the input is valid, and otherwise return an error.
Finally, we made sure to extend eval in order to check the data type and return the textual repre-

sentation depending on if we get a integer, boolean or function.

149 eval (Print s e1) = do
150 v1 <- eval e1
151 case v1 of
152 (ValInt i) → do
153 evalPrint (s ++ ": " ++ (show i))
154 pure $ v1
155 (ValBool b) → do
156 evalPrint (s ++ ": " ++ (show b))
157 pure $ v1
158 (ValFun _ _ _) → do
159 evalPrint (s ++ ": #<fun>")

2 of 4

160 pure $ v1

3 Key-value store
We redefine the State type to be a tuple of a list of key-value bindings and the print list:

20 type State = ([(Val,Val)],[String])

We then define some helper functions, similar to the env functions, to help with manipulating the
key-value store.

90 evalKvGet :: Val → EvalM Val
91 evalKvGet a = EvalM $ _env (k,s) → do
92 case lookup a k of
93 (Just v) → ((k,s), Right v)
94 (Nothing) → ((k,s), Left ("Invalid key: " ++ (show a)))
95
96 evalKvPut :: Val → Val → EvalM ()
97 evalKvPut a b = EvalM $ _env (k,s) → (((a,b):k,s), Right ())

Using those helper functions, we write our eval function for KvPut and KvGet:

161 eval (KvPut e1 e2) = do
162 v1 <- eval e1
163 v2 <- eval e2
164 evalKvPut v1 v2
165 pure $ v2
166 eval (KvGet e) = do
167 v <- eval e
168 evalKvGet v

4 Type checking
We started with the monad definition, which is mostly similar to the EvalM:

15 newtype CheckM a = CheckM (Vars → Either Error a)
16
17 instance Functor CheckM where
18 fmap = liftM
19
20 instance Applicative CheckM where
21 pure x = CheckM $ _vars → Right x
22 (<*>) = ap
23
24 instance Monad CheckM where
25 CheckM x >>= f = CheckM $ \vars →
26 case x vars of
27 Left err → Left err
28 Right x' →
29 let CheckM y = f x'
30 in y vars

We then wrote some helper functions. One that returns whether an element is in a list, 3 that are
similar to the env helper functions from eval, and 2 which check multiple expressions:

30 inList :: VName → [VName] → Bool
31 inList _ [] = False
32 inList x (y : ys) = if x == y then True else inList x ys
33

3 of 4

34 askVars :: CheckM Vars
35 askVars = CheckM $ \vars → Right vars
36
37 varsExtend :: VName → Vars → Vars
38 varsExtend v vars = v : vars
39
40 localVars :: (Vars → Vars) → CheckM a → CheckM a
41 localVars f (CheckM m) = CheckM $ \vars → m (f vars)
42
43 checkBinOp :: Exp → Exp → CheckM ()
44 checkBinOp e1 e2 = do
45 _ <- check e1
46 check e2
47
48 checkTriOp :: Exp → Exp → Exp → CheckM ()
49 checkTriOp e1 e2 e3 = do
50 _ <- check e1
51 _ <- check e2
52 check e3

Then, the check functions. The constants return a base CheckM, and all the expressions that don’t
deal with variables are checked recursively without any further logic. The 3 expressions that utilize
variables have checks based on the helper function.

45 check :: Exp → CheckM ()
46 check (CstInt _) = CheckM $ _vars → pure ()
47 check (CstBool _) = CheckM $ _vars → pure ()
48 check (Add e1 e2) = checkBinOp e1 e2
49 check (Sub e1 e2) = checkBinOp e1 e2
50 check (Mul e1 e2) = checkBinOp e1 e2
51 check (Div e1 e2) = checkBinOp e1 e2
52 check (Pow e1 e2) = checkBinOp e1 e2
53 check (Eql e1 e2) = checkBinOp e1 e2
54 check (If e1 e2 e3) = checkTriOp e1 e2 e3
55 check (Apply e1 e2) = checkBinOp e1 e2
56 check (TryCatch e1 e2) = checkBinOp e1 e2
57 check (Print _ e1) = check e1
58 check (KvGet e1) = check e1
59 check (KvPut e1 e2) = checkBinOp e1 e2
60 check (Var v) = do
61 vars <- askVars
62 if inList v vars
63 then pure ()
64 else CheckM $ _vars → Left $ "Variable not in scope: "++v
65 check (Let var e1 e2) = do
66 _ <- check e1
67 localVars (varsExtend var) $ check e2
68 check (Lambda var e1) = do
69 localVars (varsExtend var) $ check e1

Finally, we constructed the functions that run the type checking monad:

80 runCheck :: CheckM a → Either Error a
81 runCheck (CheckM m) = m varsEmpty
82
83 checkExp :: Exp → Maybe Error
84 checkExp e =
85 case runCheck $ check e of
86 Left err → Just err
87 _ → Nothing

The assignment handout does not specify how we should deal with try-catch, but we should ideally
check both and only return error if both conditions fail. Our code does not do this, but it would be ideal.

4 of 4

5 Questions
1. Our code appends each newly printed string to the end of the list. This is done in linear time,

based on the length of the list. However, if we constructed the list in reverse by appending to the
beginning of the list, this could be done in constant time.

2. In our implementation, if a program keeps updating the same key with KvPut, then we append it
to the top of the list, thus making it come before the older entry in the same list. Thus, in our
implementation the memory usage does increase, as the list grows with each usage of KvPut. If we
had instead implemented our program to lookup the key and replace the key value with the newer
key value, then we would have had the same memory usage for each update of the same key, but it
would be more computationally expensive. However, this would generally have been preferable to
the increased memory usage.

3. If e1 fails after replacing a value in a key-value pair, that effect is visible in e2, and we test for it
in trycatch(keyvalue). In order to change the behavior of the code, we would have to modify
catch in order to get the opposite behavior. We did not find a solution that worked in time for
this, however.

