
Advanced Programming 2024

Assignment One
Interpreting Arithmetic Expressions

Due: 2024-9-15

Synopsis: Implementing an interpreter for a small language
of arithmetic expressions.

1 Introduction
In this assignment you will be adding various new features to the lan-
guage implemented during the exercise classes. If you wish, you can base
the assignment on your own solutions to the exercises, rather than ours,
but only do so if you are quite sure that they are correct. Specifically, you
will be implementing the following:

• Support for functions in the interpreter.

• Support for try-catch in the interpreter.

• A pretty-printer for printing expressions in conventional (infix) no-
tation.

For all tasks you are expected to add appropriate tests to the files
AST_Tests.hs and Eval_Tests.hs. Do not rename any of the definitions
already present in the handout. Do not change the types of any functions.

1

2 Task: Functions
This task tests your ability to extend a Haskell datatype and correspond-
ing recursive functions.

Add the following constructors to Exp:

data Exp
= ...
| Lambda VName Exp
| Apply Exp Exp

Add the following constructor to Value:

data Val
= ...
| ValFun Env VName Exp

Implement the corresponding cases in eval.
A Lambda comprises a parameter name and a body expression. When

evaluated, Lambda produces a function value, represented by ValFun.
Apart from storing the parameter and body, a value function also captures
the environment at the point at which it was constructed.

An Apply applies a function expression to an argument expression.
The function expression must evaluate to a ValFun. The argument ex-
pression can evaluate to an argument value of any type. Application then
happens by starting from the environment stored in the ValFun, extend-
ing it with a binding of the parameter name to the argument value, then
using this environment to evaluate the body. The result of evaluating the
body is the result of the application.

Examples:

> eval [] (Let "x" (CstInt 2)
(Lambda "y" (Add (Var "x") (Var "y"))))

Right (ValFun [("x",ValInt 2)]
"y" (Add (Var "x") (Var "y")))

> eval [] (Apply
(Let "x" (CstInt 2)

(Lambda "y" (Add (Var "x") (Var "y"))))
(CstInt 3))

Right (ValInt 5)

The order of evaluation of the Apply subexpressions is not specified.

2

3 Task: try-catch
Add the following constructor to Exp:

data Exp
= ...
| TryCatch Exp Exp

Implement the corresponding case ineval. When evaluatingTryCatch,
we start by evaluating the first expression. If it finishes successfully, then
that is the result of the TryCatch expression. If it encounters a failure
(Left), then we evaluate the second expression, and its result is the over-
all result of evaluation.

Examples:

> eval [] (TryCatch (CstInt 0) (CstInt 1))
Right (ValInt 0)
> eval [] (TryCatch (Var "missing") (CstInt 1))
Right (ValInt 1)

4 Task: Pretty-printer
This task tests your ability to write recursive functions from scratch.

Define a function

printExp :: Exp -> String

that produces a representation of the provided expression in Haskell-
like notation, including infix notation for binary operators. Specifically:

• The binary operators are printed as x + y, replacing + with the ap-
propriate operator. Exponentiation is written with the ** operator.

• An If expression is printed as if x then y else z.

• A Let expression is printed as let x = y in z.

• A Lambda expression is printed as \x -> y.

• A Apply expression is printed as x y.

• A TryCatch expression is printed as try x catch y.

3

Make sure to add parentheses as appropriate. It is acceptable to in-
troduce more parentheses than strictly necessary. In fact, we recommend
that you enclose every expression in parentheses, as this is much easier
to implement. Parentheses must be inserted in the following cases:

• Any argument in an Applymust be parenthesized unless that argu-
ment is a constant or variable.

• The function part of an Apply must be parenthesized unless it is a
constant, variable, or another Apply.

5 Code handout
The code handout consists of the following nontrivial files.

• a1.cabal: Cabal build file. Do not modify this file.

• runtests.hs: Test execution program. Do not modify this file.

• src/APL/AST.hs: The APL AST definition.

• src/APL/Eval.hs: Evaluation functions for APL.

• src/APL/Eval_Tests.hs: Evaluation tests. Some tests are already
included. You are expected to add more.

6 Your Report
You are expected to comment on the interesting details of your implemen-
tation. You are not expected to give a line-by-line walkthrough of your
code. Most importantly, you are expected to reflect on the quality of your
code:

• Do you think it is functionally correct? Why or why not?

• Is there some improvement you’d have liked to make, but didn’t
have the time?

It is more important to be aware of the strengths or shortcomings of
your solution, than it is to have a complete solution.

4

6.1 The structure of your report

Your report must be structured exactly as follows:

Introduction: Briefly mention very general concerns, your own estima-
tion of the quality of your solution, and possibly how to run your
tests.

A section for each task: Mention whether your solution is functional,
which cases it fails for, and what you think might be wrong.

A section answering the following numbered questions:

1. What is your observable evaluation order for Apply, what dif-
ference does it make, and which of your test(s) demonstrate
this?

2. Would it be a correct implementation of eval for TryCatch to
first call eval on both subexpressions? Why or why not? If not,
under which assumptions might it be a correct implementa-
tion?

3. Is it possible for your implementation of eval to go into an
infinite loop for some inputs?

All else being equal, a short report is a good report.

7 Deliverables for This Assignment
You must submit the following items:

• A single PDF file, A4 size, no more than 5 pages, describing each
item from report section above.

• A single zip/tar.gz file with all code relevant to the implementation,
including at least all the files from the handout. For this assignment
it is not necessary to add additional files.

Remember to follow the general assignment rules listed on the course
homepage.

5

8 Assessment
You will get written qualitative feedback, and points from zero to four.
There are no resubmissions, so please hand in what you managed to
develop, even if you have not solved the assignment completely.

6

