🤡
This commit is contained in:
128
a5/src/APL/Eval.hs
Normal file
128
a5/src/APL/Eval.hs
Normal file
@ -0,0 +1,128 @@
|
||||
module APL.Eval
|
||||
( Val (..),
|
||||
Env,
|
||||
eval,
|
||||
runEval,
|
||||
)
|
||||
where
|
||||
|
||||
import APL.AST (Exp (..), VName)
|
||||
import APL.Error (Error (..))
|
||||
import Control.Monad (ap, liftM)
|
||||
|
||||
data Val
|
||||
= ValInt Integer
|
||||
| ValBool Bool
|
||||
| ValFun Env VName Exp
|
||||
deriving (Eq, Show)
|
||||
|
||||
type Env = [(VName, Val)]
|
||||
|
||||
envEmpty :: Env
|
||||
envEmpty = []
|
||||
|
||||
envExtend :: VName -> Val -> Env -> Env
|
||||
envExtend v val env = (v, val) : env
|
||||
|
||||
envLookup :: VName -> Env -> Maybe Val
|
||||
envLookup v env = lookup v env
|
||||
|
||||
newtype EvalM a = EvalM (Env -> Either Error a)
|
||||
|
||||
instance Functor EvalM where
|
||||
fmap = liftM
|
||||
|
||||
instance Applicative EvalM where
|
||||
pure x = EvalM $ \_env -> Right x
|
||||
(<*>) = ap
|
||||
|
||||
instance Monad EvalM where
|
||||
EvalM x >>= f = EvalM $ \env ->
|
||||
case x env of
|
||||
Left err -> Left err
|
||||
Right x' ->
|
||||
let EvalM y = f x'
|
||||
in y env
|
||||
|
||||
askEnv :: EvalM Env
|
||||
askEnv = EvalM $ \env -> Right env
|
||||
|
||||
localEnv :: (Env -> Env) -> EvalM a -> EvalM a
|
||||
localEnv f (EvalM m) = EvalM $ \env -> m (f env)
|
||||
|
||||
failure :: Error -> EvalM a
|
||||
failure s = EvalM $ \_env -> Left s
|
||||
|
||||
catch :: EvalM a -> EvalM a -> EvalM a
|
||||
catch (EvalM m1) (EvalM m2) = EvalM $ \env ->
|
||||
case m1 env of
|
||||
Left _ -> m2 env
|
||||
Right x -> Right x
|
||||
|
||||
runEval :: EvalM a -> Either Error a
|
||||
runEval (EvalM m) = m envEmpty
|
||||
|
||||
evalIntBinOp :: (Integer -> Integer -> EvalM Integer) -> Exp -> Exp -> EvalM Val
|
||||
evalIntBinOp f e1 e2 = do
|
||||
v1 <- eval e1
|
||||
v2 <- eval e2
|
||||
case (v1, v2) of
|
||||
(ValInt x, ValInt y) -> ValInt <$> f x y
|
||||
(_, _) -> failure NonInteger
|
||||
|
||||
evalIntBinOp' :: (Integer -> Integer -> Integer) -> Exp -> Exp -> EvalM Val
|
||||
evalIntBinOp' f e1 e2 =
|
||||
evalIntBinOp f' e1 e2
|
||||
where
|
||||
f' x y = pure $ f x y
|
||||
|
||||
eval :: Exp -> EvalM Val
|
||||
eval (CstInt x) = pure $ ValInt x
|
||||
eval (CstBool b) = pure $ ValBool b
|
||||
eval (Var v) = do
|
||||
env <- askEnv
|
||||
case envLookup v env of
|
||||
Just x -> pure x
|
||||
Nothing -> failure $ UnknownVariable v
|
||||
eval (Add e1 e2) = evalIntBinOp' (+) e1 e2
|
||||
eval (Sub e1 e2) = evalIntBinOp' (-) e1 e2
|
||||
eval (Mul e1 e2) = evalIntBinOp' (*) e1 e2
|
||||
eval (Div e1 e2) = evalIntBinOp checkedDiv e1 e2
|
||||
where
|
||||
checkedDiv _ 0 = failure DivisionByZero
|
||||
checkedDiv x y = pure $ x `div` y
|
||||
eval (Pow e1 e2) = evalIntBinOp checkedPow e1 e2
|
||||
where
|
||||
checkedPow x y =
|
||||
if y < 0
|
||||
then failure NegativeExponent
|
||||
else pure $ x ^ y
|
||||
eval (Eql e1 e2) = do
|
||||
v1 <- eval e1
|
||||
v2 <- eval e2
|
||||
case (v1, v2) of
|
||||
(ValInt x, ValInt y) -> pure $ ValBool $ x == y
|
||||
(ValBool x, ValBool y) -> pure $ ValBool $ x == y
|
||||
(_, _) -> failure InvalidEqual
|
||||
eval (If cond e1 e2) = do
|
||||
cond' <- eval cond
|
||||
case cond' of
|
||||
ValBool True -> eval e1
|
||||
ValBool False -> eval e2
|
||||
_ -> failure NonBoolean
|
||||
eval (Let var e1 e2) = do
|
||||
v1 <- eval e1
|
||||
localEnv (envExtend var v1) $ eval e2
|
||||
eval (Lambda var body) = do
|
||||
env <- askEnv
|
||||
pure $ ValFun env var body
|
||||
eval (Apply e1 e2) = do
|
||||
v1 <- eval e1
|
||||
v2 <- eval e2
|
||||
case (v1, v2) of
|
||||
(ValFun f_env var body, arg) ->
|
||||
localEnv (const $ envExtend var arg f_env) $ eval body
|
||||
(_, _) ->
|
||||
failure NonFunction
|
||||
eval (TryCatch e1 e2) =
|
||||
eval e1 `catch` eval e2
|
Reference in New Issue
Block a user